Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet

Abstract A plasma-combustion coupling mechanism is proposed and applied to the laser-induced atmospheric-pressure ignition and combustion of a hydrogen jet as assisted by a dielectric-barrier discharge (DBD). The specific configuration matches corresponding experiments, and the proposed coupling mechanism leads to an improvement of the prediction for ignition probability and explains the observed electrical power increase during burning conditions. To realize this, the model includes the key effects of the fast DBD microflimentary plasma structure on combustion time scales, which would not be included in a simpler quasi-steady approximation. It also explains observed plasma emission patterns and the dependence of the DBD power absorbed on the cross-flow velocity. The main conclusion of the present computational analysis is that the interaction of plasma and combustion supports a two-way coupling rooted in the electron and neutral energy equations. The coupling selectively amplifies the energy and radical contributions by the discharge at the ignition hot spot. These contributions dominate the evolution of hot spots interacting with the local electric field over dielectric surfaces and are a key ingredient of predictive ignition models. Results are discussed in the context of the lower pressure, lower equivalence ratio and lower dimensional (often premixed and quasi-one-dimensional) studies that provide insights for developing this integrated model while illuminating the important differences of the coupling in non-premixed conditions at atmospheric pressure.

[1]  L. C. Pitchford,et al.  Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge , 2005 .

[2]  V. Guerra,et al.  Kinetic modeling of low-pressure nitrogen discharges and post-discharges , 2004 .

[3]  J. St.‐Maurice,et al.  Dissociative recombination of N2+, O2+, and NO+: Rate coefficients for ground state and vibrationally excited ions , 2004 .

[4]  Mark J. Kushner,et al.  Ion composition of expanding microdischarges in dielectric barrier discharges , 1998 .

[5]  S. Pancheshnyi,et al.  Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  W. Lempert,et al.  Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge , 2016 .

[7]  S. Starikovskaia,et al.  4 Plasma-Assisted Ignition and Combustion , 2010 .

[8]  C. Carter,et al.  Measurements of temperature and hydroxyl radical generation/decay in lean fuel–air mixtures excited by a repetitively pulsed nanosecond discharge , 2013 .

[9]  S. Starikovskaia,et al.  Measurements of rate constants of the N2(C3Πu,v′=0) and N2+(B2Σ+u,v′=0) deactivation by N2, O2, H2, CO and H2O molecules in afterglow of the nanosecond discharge , 1998 .

[10]  A. Luque,et al.  Positive and negative streamers in ambient air: modelling evolution and velocities , 2008, 0804.3539.

[11]  S. Leonov,et al.  Plasma-induced ignition and plasma-assisted combustion in high-speed flow , 2007 .

[12]  Luca Massa,et al.  An integrated predictive simulation model for the plasma-assisted ignition of a fuel jet in a turbulent crossflow , 2016 .

[13]  S. Lawton,et al.  Excitation of the b 1Σ+g state of O2 by low energy electrons , 1978 .

[14]  V. Yang,et al.  Nanosecond plasma enhanced H2/O2/N2 premixed flat flames , 2015 .

[15]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[16]  V. Yang,et al.  Ignition of hydrogen–air mixtures using pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry , 2014 .

[17]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[18]  S. Starikovskaia,et al.  Collisional deactivation of N2(C , v=0, 1, 2, 3) states by N2, O2, H2 and H2O molecules , 2000 .

[19]  A. G. Gaydon Flame spectra in the photographic infra-red , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  P. Seakins Product branching ratios in simple gas phase reactions , 2007 .

[21]  Hyungrok Do,et al.  Plasma assisted cavity flame ignition in supersonic flows , 2010 .

[22]  W. Lempert,et al.  Time-resolved radical species and temperature distributions in an Ar–O2–H2 mixture excited by a nanosecond pulse discharge , 2015 .

[23]  V. Anicich An index of the literature for bimolecular gas phase cation-molecule reaction kinetics , 2003 .

[24]  David B. Graves,et al.  Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species , 2012 .

[25]  W. Saric,et al.  Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator , 2013 .

[26]  J. Simons,et al.  Dissociative Recombination of H 3 O , 1999 .

[27]  H. Johnson,et al.  Hydrogen Recombination Rates on Silica from Atomic-Scale Calculations , 2016 .

[28]  S. Starikovskaia,et al.  Hydrogen oxidation in a stoichiometric hydrogen-air mixture in the fast ionization wave , 2001 .

[29]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[30]  N. Popov Effect of a pulsed high-current discharge on hydrogen-air mixtures , 2008 .

[31]  Graham V. Candler,et al.  Numerical Studies of Laser-Induced Energy Deposition for Supersonic Flow Control , 2003 .

[32]  N. Mason,et al.  Cross Sections for Electron Collisions with Water Molecules , 2005 .

[33]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[34]  T. Millar,et al.  The UMIST database for astrochemistry 2012 , 2012, 1212.6362.

[35]  Š. Matejčík,et al.  An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air , 2004 .

[36]  Gregory S Elliott,et al.  Ignition, Sustained Flame, and Extinction of a Dielectric-Barrier-Discharge Altered Hydrogen Jet in a Cross-Flow , 2016 .

[37]  S. Kearney,et al.  Spatially correlated temperature oxygen and fuel measurements in a plasma-assisted hydrogen diffusion flame by one-dimensional fs/ps rotational CARS imaging. , 2017 .

[38]  A. Fridman,et al.  Non-thermal atmospheric pressure discharges , 2005 .

[39]  J. R. Peterson,et al.  Dissociative recombination and excitation of O2+: Cross sections, product yields and implications for studies of ionospheric airglows , 2001 .

[40]  W. Lempert,et al.  Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air , 2014 .

[41]  Thomas,et al.  Recombination of simple molecular ions studied in storage ring: dissociative recombination of H2O+ , 2000, Faraday discussions.

[42]  P. Warneck,et al.  Reactions of CO2+, CO2CO2+ and H2O+ ions with various neutral molecules , 1980 .

[43]  Paul H. Krupenie The Spectrum of Molecular Oxygen , 1972 .

[44]  G. S. S. Ludford,et al.  Lectures on mathematical combustion , 1983 .

[45]  Skip Williams,et al.  Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3 , 2010 .

[46]  M. Yoshino,et al.  Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular Ions , 1990 .

[47]  S. Starikovskaia,et al.  Plasma assisted ignition and combustion , 2006 .

[48]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[49]  Forman A. Williams,et al.  An explicit reduced mechanism for H2–air combustion , 2011 .

[50]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[51]  S. Starikovskaia,et al.  Population of nitrogen molecule electron states and structure of the fast ionization wave , 1999 .

[52]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[53]  N. Mason,et al.  Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure , 2008 .

[54]  B. Bédat,et al.  Experimental Study of Premixed Flames in Intense Isotropic Turbulence , 1995 .

[55]  Walter R. Lempert,et al.  Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma , 2007 .

[56]  S. Leonov,et al.  Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector , 2015 .

[57]  S. Wilkinson,et al.  Dielectric Barrier Discharge Plasma Actuators for Flow Control , 2010 .

[58]  A. Viggiano,et al.  RATE CONSTANTS FOR THE REACTIONS OF N+ AND N2+ WITH O2 AS A FUNCTION OF TEMPERATURE (300-1800 K) , 1997 .

[59]  B. Gravendeel,et al.  Clustered Negative Ions in Atmospheric Negative Corona Discharges in the Trichel Regime , 1987 .

[60]  M. M. Shahin Mass‐Spectrometric Studies of Corona Discharges in Air at Atmospheric Pressures , 1966 .

[61]  T. Bell,et al.  Spatial structure of sprites , 1998 .

[62]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[63]  Brian D. Patterson,et al.  Visible emission of hydrogen flames , 2009 .

[64]  I. Rutkevich,et al.  Ionization waves in electrical breakdown of gases , 1993 .

[65]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[66]  Yvette Zuzeek,et al.  Pure rotational CARS studies of thermal energy release and ignition in nanosecond repetitively pulsed hydrogen-air plasmas , 2011 .

[67]  A. Phelps,et al.  Electron Attachment and Detachment. I. Pure O2 at Low Energy , 1966 .

[68]  Gregory S Elliott,et al.  Coaxial DBD Actuator Design for Control of a Hydrogen Diffusion Flame , 2016 .

[69]  J. Jovanovi,et al.  Measurement and interpretation of swarm parameters and their application in plasma modelling , 2009 .

[70]  David J. Rose,et al.  Basic Processes of Gaseous Electronics , 1956 .

[71]  D. Chamberlin,et al.  The Flicker of Luminous Flames , 1928 .

[72]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Oxygen Molecules , 2009 .

[73]  S. Starikovskaia,et al.  Ignition of high pressure lean H2:air mixtures along the multiple channels of nanosecond surface discharge , 2017 .

[74]  V. Zhaunerchyk,et al.  REASSESSMENT OF THE DISSOCIATIVE RECOMBINATION OF N2H+ AT CRYRING , 2012 .

[75]  L. H. Andersen,et al.  Dissociative recombination of NO , 1998 .

[76]  R. Brinkmann Beyond the step model: Approximate expressions for the field in the plasma boundary sheath , 2007 .

[77]  D. Savin,et al.  Absolute energy-resolved measurements of the H/sup -/+H rarr H/sub 2/+e/sup -/ associative detachment reaction using a merged-beam apparatus , 2010 .