Topology B-Trees and Their Applications

The well-known B-tree data structure provides a mechanism for dynamically maintaining balanced binary trees in external memory. We present an external-memory dynamic data structure for maintaining arbitrary binary trees. Our data structure, which we call the topology B-tree, is an external-memory analogue to the internal-memory topology tree data structure of Frederickson. It allows for dynamic expression evaluation and updates as well as various tree searching and evaluation queries. We show how to apply this data structure to a number of external-memory dynamic problems, including approximate nearest-neighbor searching and closest-pair maintenance.

[1]  Robert Laurini,et al.  9 – Design for Information Systems: Methodologies, issues , 1992 .

[2]  Lars Arge,et al.  The Buuer Tree: a New Technique for Optimal I/o-algorithms ? , 1995 .

[3]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[4]  R. Tamassia,et al.  Dynamic expression trees and their applications , 1991, SODA '91.

[5]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[6]  M. J. van Kreveld,et al.  Maintaining range trees in secondary memory. Part I: Partitions , 1987 .

[7]  Lars Arge,et al.  The Buffer Tree: A New Technique for Optimal I/O-Algorithms (Extended Abstract) , 1995, WADS.

[8]  Sergei Bespamyatnikh,et al.  An Optimal Algorithm for Closest-Pair Maintenance , 1998, Discret. Comput. Geom..

[9]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[10]  Derek Thompson,et al.  Fundamentals of spatial information systems , 1992, A.P.I.C. series.

[11]  Jeffrey Scott Vitter,et al.  Efficient Memory Access in Large-Scale Computation , 1991, STACS.

[12]  Jyh-Jong Tsay,et al.  External-memory computational geometry , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[13]  William Pugh,et al.  Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.

[14]  Max J. Egenhofer,et al.  Advances in Spatial Databases , 1997, Lecture Notes in Computer Science.

[15]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[16]  Sergei N. Bespamyatnikh An optimal algorithm for closest pair maintenance (extended abstract) , 1995, SoCG 1995.

[17]  Sridhar Ramaswamy,et al.  Indexing for data models with constraints and classes (extended abstract) , 1993, PODS '93.

[18]  David Maier,et al.  Hysterical B-trees , 1981, Inf. Process. Lett..

[19]  Sunil Arya,et al.  Approximate range searching , 1995, SCG '95.

[20]  Greg N. Frederickson,et al.  A data structure for dynamically maintaining rooted trees , 1997, SODA '93.

[21]  S. Rao Kosaraju,et al.  Algorithms for dynamic closest pair and n-body potential fields , 1995, SODA '95.

[22]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[23]  Sridhar Ramaswamy,et al.  Indexing for Data Models with Constraints and Classes , 1996, J. Comput. Syst. Sci..