Hierarchical control for discrete large-scale complex systems by intelligent controllers

This paper presents a new method to approximate optimal control strategies of discrete time large-scale nonlinear systems using intelligent approaches. The idea is based on the decomposition principle of the global system into interconnected subsystems for which nonlinearities are located in the interconnection terms. Then, the mixed coordination procedure between different subsystems is formulated as a hierarchical method for the solution of large-scale optimal control problems. So, for each subsystem, local optimal feedback gains are expressed in terms of the interconnection vector. For this purpose, neural networks and fuzzy logic controllers have been constructed in order to identify these gains. A comparison with the differential dynamic programming procedure as a reference method is done. Simulation results of two numerical examples show that the proposed method yields to satisfactory performances, and the robustness of the proposed approaches has been tested.

[1]  Peter B. Luh,et al.  The mixed coordination method and its application to the hydroelectric scheduling problems , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[2]  Nabil Derbel,et al.  Application de la programmation dynamique différentielle avec contraintes pour la commande d'une grue , 1992 .

[3]  Nabil Derbel,et al.  Sur l'utilisation de la programmation dynamique différentielle pour la commande optimale de systèmes complexes , 1989 .

[4]  Ginalber Luiz de Oliveira Serra,et al.  Methodology for fuzzy identification in a noisy environment , 2006, Int. J. Model. Identif. Control..

[5]  Y. Sakawa,et al.  Optimal control of a rotary crane , 1979 .

[6]  Magdi S. Mahmoud,et al.  Large-scale control systems : theories and techniques , 1985 .

[7]  A. P. Sage,et al.  System identification in large scale systems with hierarchical structures , 1973 .

[8]  Yoshiyuki Sakawa,et al.  Optimal control of container cranes , 1981, Autom..

[9]  Nabil Derbel,et al.  Decomposition and hierarchical control for discrete large scale system using neural networks , 2009, 2009 International Conference on Advances in Computational Tools for Engineering Applications.

[10]  W. M. Wonham,et al.  Decentralized control and coordination of discrete-event systems with partial observation , 1990 .

[11]  Douglas Looze,et al.  Parametric coordination in hierarchical control , 1983, The 22nd IEEE Conference on Decision and Control.

[12]  Peter B. Luh,et al.  Mixed coordination method for long-horizon optimal control problems , 1991 .

[13]  Nabil Derbel,et al.  On the suboptimal solution for large scale non-linear control systems using neural networks , 2007, Int. J. Model. Identif. Control..

[14]  Nabil Derbel,et al.  On the neuro-genetic approach for determining optimal control of a rotary crane , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[15]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[16]  Madan G. Singh,et al.  Comparisons of practical hierarchical control methods for interconnected dynamical systems , 1975, Autom..

[17]  Peter B. Luh,et al.  Large-scale convex optimal control problems: time decomposition, incentive coordination, and parallel algorithm , 1990 .

[18]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[19]  J. B. Cruz,et al.  Optimal coordination of multimodel interconnected systems with sow and fast modes , 1984 .

[20]  Cong Wang,et al.  Adaptive neural control of a permanent magnet synchronous motor , 2006, Int. J. Model. Identif. Control..

[21]  M. Jamshidi Large-Scale Systems: Modeling, Control and Fuzzy Logic , 1996 .

[22]  Madan G. Singh,et al.  Systems: Decomposition, optimisation, and control , 1978 .

[23]  Peter B. Luh,et al.  Hydrothermal scheduling via extended differential dynamic programming and mixed coordination , 1995 .

[24]  N. J. Smith,et al.  AN INTRODUCTION TO HIERARCHICAL SYSTEMS THEORY , 1973 .

[25]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[26]  P. Luh,et al.  Mixed coordination method for non-linear programming problems with separable structures , 1989 .

[27]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  D. Jacobson Second-order and Second-variation Methods for Determining Optimal Control: A Comparative Study using Differential Dynamic Programming† , 1968 .

[29]  Dong Yue,et al.  An example system for the study of advanced large-scale system control , 2009, Int. J. Model. Identif. Control..

[30]  Axel Munack,et al.  Application of decomposition/coordination methods to parameter identification problems in interconnected distributed parameter systems , 1986, Autom..

[31]  Magdi S. Mahmoud,et al.  Guaranteed stabilization of interconnected discrete-time uncertain systems , 1995 .

[32]  Hecht-Nielsen Theory of the backpropagation neural network , 1989 .

[33]  Nabil Derbel,et al.  Decomposition and hierarchical control for discrete complex systems by fuzzy logic controllers , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.