Identification of indocyanine green as a STT3B inhibitor against mushroom α-amanitin cytotoxicity

[1]  Jinfang Xue,et al.  Mechanism and treatment of α-amanitin poisoning , 2022, Archives of Toxicology.

[2]  J. Duarte,et al.  Antidotal effect of cyclosporine A against α-amanitin toxicity in CD-1 mice, at clinical relevant doses. , 2022, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[3]  H. Barman,et al.  Delayed liver toxicity and delayed gastroenteritis: A 5 year retrospective analysis of the cause of death in Mushroom poisoning , 2022, Journal of family medicine and primary care.

[4]  A. Earl,et al.  Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors , 2022, Cell.

[5]  C. Doglioni,et al.  Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies , 2022, Science Translational Medicine.

[6]  S. Pires,et al.  Mushroom Poisoning Outbreaks — China, 2010–2020 , 2021, China CDC weekly.

[7]  P. Ferron,et al.  Toxic Effects of Amanitins: Repurposing Toxicities toward New Therapeutics , 2021, Toxins.

[8]  D. Rader,et al.  Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver , 2021, Science Advances.

[9]  R. Tong,et al.  Intravenous rifampicin use in the management of amanita phalloides toxicity , 2021, Clinical toxicology.

[10]  Zhemin Zhou,et al.  Genome-wide dissection reveals diverse pathogenic roles of bacterial Tc toxins. , 2021, PLoS pathogens.

[11]  Guowei Yang,et al.  N-Glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells , 2021, PLoS pathogens.

[12]  N. Krogan,et al.  Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses , 2020, Cell.

[13]  A. Xu,et al.  RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer , 2020, Gut.

[14]  Silva Kasela,et al.  Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells , 2020, Cell.

[15]  Peter C. DeWeirdt,et al.  Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection , 2020, Cell.

[16]  J. Decaprio,et al.  CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. , 2020, Molecular cell.

[17]  A. Schmidt,et al.  Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. , 2020, Toxicology in vitro : an international journal published in association with BIBRA.

[18]  John L. Rubinstein,et al.  Recognition of Semaphorin Proteins by P. sordellii Lethal Toxin Reveals Principles of Receptor Specificity in Clostridial Toxins , 2020, Cell.

[19]  F. Carvalho,et al.  In vitro mechanistic studies on α-amanitin and its putative antidotes , 2020, Archives of Toxicology.

[20]  Francisco J. Sánchez-Rivera,et al.  Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks , 2020, Cell.

[21]  M. Pajic,et al.  Systematic functional identification of cancer multi-drug resistance genes , 2020, Genome Biology.

[22]  T. Schumacher,et al.  Tumor organoid–T-cell coculture systems , 2019, Nature Protocols.

[23]  Julia Kowal,et al.  Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B , 2019, Science.

[24]  Paige E. Mandelare,et al.  N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis , 2019, Microbial Ecology.

[25]  I. Ng,et al.  Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC , 2019, Nature Communications.

[26]  H. Yoshida,et al.  Golgi stress response and organelle zones , 2019, FEBS letters.

[27]  S. Shaffer,et al.  Quantitative glycoproteomics reveals new classes of STT3A- and STT3B-dependent N-glycosylation sites , 2019, The Journal of cell biology.

[28]  C. Lau,et al.  Application of indocyanine green in pediatric surgery , 2019, Pediatric Surgery International.

[29]  A. Tsatsakis,et al.  Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. , 2019, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[30]  J. Seymour,et al.  Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote , 2019, Nature Communications.

[31]  D. Hebert,et al.  Protein Quality Control in the Endoplasmic Reticulum , 2019, The Protein Journal.

[32]  J. Duarte,et al.  An effective antidotal combination of polymyxin B and methylprednisolone for α-amanitin intoxication , 2019, Archives of Toxicology.

[33]  Mengmeng Sun,et al.  Site-Selective in Situ Growth-Induced Self-Assembly of Protein-Polymer Conjugates into pH-Responsive Micelles for Tumor Microenvironment Triggered Fluorescence Imaging. , 2018, Biomacromolecules.

[34]  Jennifer E. Golden,et al.  Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. , 2018, Cell chemical biology.

[35]  J-W. Xie,et al.  Investigating and analyzing three cohorts of mushroom poisoning caused by Amanita exitialis in Yunnan, China , 2018, Human & experimental toxicology.

[36]  Cheng-ye Sun,et al.  Effect of Biliary Drainage on the Toxicity and Toxicokinetics of Amanita exitialis in Beagles , 2018, Toxins.

[37]  M. Betenbaugh,et al.  SnapShot: N-Glycosylation Processing Pathways across Kingdoms , 2017, Cell.

[38]  K. Mechtler,et al.  Comparative glycoproteomics of stem cells identifies new players in ricin toxicity , 2017, Nature.

[39]  M. Ergin,et al.  The role of oxidative stress in α-amanitin-induced hepatotoxicityin an experimental mouse model. , 2017, Turkish journal of medical sciences.

[40]  Jennifer E. Golden,et al.  Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. , 2016, Nature chemical biology.

[41]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[42]  P. Asih,et al.  Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines , 2016, Advanced biomedical research.

[43]  B. Heniford,et al.  Indocyanine Green , 2016, Surgical innovation.

[44]  Shery Jacob,et al.  A simple practice guide for dose conversion between animals and human , 2016, Journal of basic and clinical pharmacy.

[45]  F. Carvalho,et al.  Amanita phalloides poisoning: Mechanisms of toxicity and treatment. , 2015, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[46]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[47]  G. Superti-Furga,et al.  Gene essentiality and synthetic lethality in haploid human cells , 2015, Science.

[48]  Daniel F. A. R. Dourado,et al.  A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B , 2015, Archives of Toxicology.

[49]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[50]  T. Stehle,et al.  Glycan Engagement by Viruses: Receptor Switches and Specificity. , 2014, Annual review of virology.

[51]  K. Yaykasli,et al.  Dermal absorption and toxicity of alpha amanitin in mice , 2014, Cutaneous and ocular toxicology.

[52]  A. Rehemtulla,et al.  High-throughput screening identifies aclacinomycin as a radiosensitizer of EGFR-mutant non-small cell lung cancer. , 2013, Translational oncology.

[53]  Y. Takehara,et al.  Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: its usefulness and limitation , 2013, International Journal of Clinical Oncology.

[54]  David Ryan Koes,et al.  Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise , 2013, J. Chem. Inf. Model..

[55]  M. Taura,et al.  STT3B-dependent posttranslational N-glycosylation as a surveillance system for secretory protein. , 2012, Molecular cell.

[56]  Kelley W. Moremen,et al.  Vertebrate protein glycosylation: diversity, synthesis and function , 2012, Nature Reviews Molecular Cell Biology.

[57]  Petri Välisuo,et al.  A Review of Indocyanine Green Fluorescent Imaging in Surgery , 2012, Int. J. Biomed. Imaging.

[58]  Jacob D. Durrant,et al.  NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function , 2011, J. Chem. Inf. Model..

[59]  T. Sozański,et al.  Benzylpenicyllin and acetylcysteine protection from α-amanitin-induced apoptosis in human hepatocyte cultures. , 2011, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[60]  G. Kullak-Ublick,et al.  Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. , 2011, Journal of hepatology.

[61]  S. Abdel‐Rahman,et al.  Indocyanine green clearance varies as a function of N-acetylcysteine treatment in a murine model of acetaminophen toxicity. , 2011, Chemico-biological interactions.

[62]  C. Ruiz-Cañada,et al.  Cotranslational and Posttranslational N-Glycosylation of Polypeptides by Distinct Mammalian OST Isoforms , 2009, Cell.

[63]  T. Zilker,et al.  [Amanita poisoning--comparison of silibinin with a combination of silibinin and penicillin]. , 2008, Deutsche medizinische Wochenschrift.

[64]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[65]  Michael A Favata,et al.  Comparative treatment of alpha-amanitin poisoning with N-acetylcysteine, benzylpenicillin, cimetidine, thioctic acid, and silybin in a murine model. , 2007, Annals of Emergency Medicine.

[66]  B. Neuschwander‐Tetri,et al.  The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin α-amanitin , 2004, Archives of Toxicology.

[67]  E. Röhrdanz,et al.  Influence of Tumor Necrosis Factor-α and Silibin on the Cytotoxic Action of α-Amanitin in Rat Hepatocyte Culture , 1999 .

[68]  G. Vanscoy,et al.  Failure of N‐Acetylcysteine to reduce alpha amanitin toxicity , 1992, Journal of applied toxicology : JAT.

[69]  J. Magdalan,et al.  alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes. , 2010, Folia histochemica et cytobiologica.