Hybrid music recommender using content-based and social information

Internet resources available today, including songs, albums, playlists or podcasts, that a user cannot discover if there is not a tool to filter the items that the user might consider relevant. Several recommendation techniques have been developed since the Internet explosion to achieve this filtering task. In an attempt to recommend relevant songs to users, we propose an hybrid recommender that considers real-world users information and high-level representation for audio data. We use a deep learning technique, convolutional deep neural networks, to represent an audio segment in a n-dimensional vector, whose dimensions define the probability of the segment to belong to a specific music genre. To capture the listening behavior of a user, we investigate a state-of-the-art technique, estimation of distribution algorithms. The designed hybrid music recommender outperforms the predictions compared with a traditional content-based recommender.

[1]  Lina Yao,et al.  Unified Collaborative and Content-Based Web Service Recommendation , 2015, IEEE Transactions on Services Computing.

[3]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[4]  Fan Jiancong,et al.  A Hybrid Recommendation Model Based on Estimation of Distribution Algorithms , 2014 .

[5]  Vikas Sindhwani,et al.  Recommender Systems , 2010, Encyclopedia of Machine Learning and Data Mining.

[6]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[7]  Cong Jin,et al.  Software reliability prediction model based on support vector regression with improved estimation of distribution algorithms , 2014, Appl. Soft Comput..

[8]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[9]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[10]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[11]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[12]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[13]  Chong Wang,et al.  Latent Collaborative Retrieval , 2012, ICML.

[14]  Junjie Yao,et al.  Challenging the Long Tail Recommendation , 2012, Proc. VLDB Endow..

[15]  Òscar Celma Herrada Music recommendation and discovery in the long tail , 2009 .

[16]  Bob L. Sturm,et al.  Deep Learning and Music Adversaries , 2015, IEEE Transactions on Multimedia.

[17]  Masataka Goto,et al.  An Efficient Hybrid Music Recommender System Using an Incrementally Trainable Probabilistic Generative Model , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[18]  Marc Leman,et al.  Content-Based Music Information Retrieval: Current Directions and Future Challenges , 2008, Proceedings of the IEEE.

[19]  David Harte,et al.  PtProcess: An R Package for Modelling Marked Point Processes Indexed by Time , 2010 .

[20]  Detlef Schoder,et al.  Cross-cultural gender differences in the adoption and usage of social media platforms - An exploratory study of Last.FM , 2014, Comput. Networks.

[21]  Concha Bielza,et al.  Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms , 2010 .

[22]  Djallel Bouneffouf Towards User Profile Modelling in Recommender System , 2013, ArXiv.

[23]  Benjamin Schrauwen,et al.  Deep content-based music recommendation , 2013, NIPS.

[24]  Liang He,et al.  Evaluating recommender systems , 2012, Seventh International Conference on Digital Information Management (ICDIM 2012).

[25]  Michael A. Casey Content-Based Music Information Retrieval , 2008 .

[26]  Martin Pelikan,et al.  Estimation of Distribution Algorithms , 2015, Handbook of Computational Intelligence.

[27]  Xavier Serra,et al.  Bridging the Music Semantic Gap , 2006 .

[28]  Alexander Tuzhilin,et al.  The long tail of recommender systems and how to leverage it , 2008, RecSys '08.

[29]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[30]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[31]  Lixin Ding,et al.  Comparison of Effects of Different Learning Methods on Estimation of Distribution Algorithms , 2015 .

[32]  Guy Shani,et al.  Evaluating Recommender Systems , 2015, Recommender Systems Handbook.

[33]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[34]  Marcus Gallagher,et al.  Bayesian inference in estimation of distribution algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Wei Jiang,et al.  A Personalized Recommendation System for NetEase Dating Site , 2014, Proc. VLDB Endow..

[36]  Tara N. Sainath,et al.  FUNDAMENTAL TECHNOLOGIES IN MODERN SPEECH RECOGNITION Digital Object Identifier 10.1109/MSP.2012.2205597 , 2012 .

[37]  Pasquale Lops,et al.  Content-based Recommender Systems: State of the Art and Trends , 2011, Recommender Systems Handbook.

[38]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[39]  Simon Dixon,et al.  Improved music feature learning with deep neural networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[40]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[41]  Shawn P. Stapleton,et al.  A Self-Organized Network for Load Balancing Using Intelligent Distributed Antenna System [4pt]Un réseau auto-organisé pour l’équilibrage de charge utilisant un système intelligent d’antennes distribuées , 2015, Canadian Journal of Electrical and Computer Engineering.