Empirical study on rotation and information exchange in particle swarm optimization

Abstract This paper investigates whether rotational variance and information exchange affect the performance of Particle Swarm Optimization (PSO) algorithms. Four PSO versions which include the presence or absence of rotational variance, and the fast or late information exchange among particles are under evaluation. The goal is to highlight the best approach and principal benefits of each PSO version based on numerical simulations. To accomplish the aforesaid, the algorithms were evaluated on CEC 2017 benchmark optimization problems. Additionally, a method to estimate a reliable number of algorithms executions was also proposed. Statistical measurements based on Clerc's rules were used to strengthen the analyses. The results indicated the rotationally variant PSO as the overall winner, and the fast information exchange was statistically significant better than the late one, according to Friedman's and Wilcoxon's tests.

[1]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[2]  A. Groenwold,et al.  Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance , 2007 .

[3]  Richard E. Haskell,et al.  Enhancing performance of PSO with automatic parameter tuning technique , 2009, 2009 IEEE Swarm Intelligence Symposium.

[4]  Ajith Abraham,et al.  Inter-particle communication and search-dynamics of lbest particle swarm optimizers: An analysis , 2012, Inf. Sci..

[5]  Martin Middendorf,et al.  On Trajectories of Particles in PSO , 2007, 2007 IEEE Swarm Intelligence Symposium.

[6]  Yonggang Chen,et al.  Particle swarm optimizer with two differential mutation , 2017, Appl. Soft Comput..

[7]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[8]  Tao Li,et al.  Particle swarm optimizer with crossover operation , 2018, Eng. Appl. Artif. Intell..

[9]  Kenya Jin'no,et al.  An improved rotationally invariant PSO: A modified standard PSO-2011 , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[10]  Inayet Ozge Aksu,et al.  Training the multifeedback-layer neural network using the Particle Swarm Optimization algorithm , 2013, 2013 International Conference on Electronics, Computer and Computation (ICECCO).

[11]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[12]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[13]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Athanasios V. Vasilakos,et al.  Vector coevolving particle swarm optimization algorithm , 2017, Inf. Sci..

[16]  A. Groenwold,et al.  Comparison of linear and classical velocity update rules in particle swarm optimization: notes on diversity , 2007 .

[17]  Najeh Ben Guedria,et al.  Improved accelerated PSO algorithm for mechanical engineering optimization problems , 2016, Appl. Soft Comput..

[18]  David R. Kincaid,et al.  Linear Algebra: Theory and Applications , 2010 .

[19]  Ana I. Pereira,et al.  Genetic algorithm and particle swarm optimization combined with Powell method , 2013 .

[20]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[22]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[23]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[24]  N. Burum,et al.  Using particle swarm optimization in training neural network for indoor field strength prediction , 2009, 2009 International Symposium ELMAR.

[25]  Gang Xu,et al.  On convergence analysis of particle swarm optimization algorithm , 2018, J. Comput. Appl. Math..

[26]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[27]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[28]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[29]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[30]  Derek T. Green,et al.  Biases in Particle Swarm Optimization , 2010 .

[31]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[32]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[33]  Maurice Clerc,et al.  Confinements and Biases in Particle Swarm Optimisation , 2006 .

[34]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[35]  Kenya Jin'no,et al.  A novel particle swarm optimization algorithm for non-separable and ill-conditioned problems , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[36]  Gang George Yin,et al.  Analyzing Convergence and Rates of Convergence of Particle Swarm Optimization Algorithms Using Stochastic Approximation Methods , 2013, IEEE Transactions on Automatic Control.

[37]  Zbigniew Michalewicz,et al.  A locally convergent rotationally invariant particle swarm optimization algorithm , 2014, Swarm Intelligence.

[38]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[39]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[40]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[41]  Ke Chen,et al.  A hybrid particle swarm optimizer with sine cosine acceleration coefficients , 2018, Inf. Sci..

[42]  M. Babita Jain,et al.  Optimal sizing of distributed generation using particle swarm optimization , 2017, 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT).

[43]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[44]  Han Huang,et al.  A Particle Swarm Optimization Algorithm with Differential Evolution , 2007, 2007 International Conference on Machine Learning and Cybernetics.

[45]  Shashi Mathur,et al.  Particle swarm optimization trained neural network for aquifer parameter estimation , 2012 .

[46]  Sun Ying,et al.  A Particle Swarm Optimization Algorithm with Ant Search for Solving Traveling Salesman Problem , 2009, 2009 International Conference on Computational Intelligence and Security.

[47]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[48]  Xin Wang,et al.  Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization , 2016, Knowl. Based Syst..

[49]  Aboul Ella Hassanien,et al.  ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment , 2018, Expert Syst. Appl..

[50]  Ponnuthurai N. Suganthan,et al.  Population topologies for particle swarm optimization and differential evolution , 2017, Swarm Evol. Comput..

[51]  Russell C. Eberhart,et al.  Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization , 2002 .

[52]  Javad Rahimipour Anaraki,et al.  Balanced fuzzy particle swarm optimization , 2012 .

[53]  Kevin Massey,et al.  Swarm algorithm with adaptive mutation for airfoil aerodynamic design , 2015, Swarm Evol. Comput..

[54]  M. Noel,et al.  A new gradient based particle swarm optimization algorithm for accurate computation of global minimum , 2012, Appl. Soft Comput..

[55]  Orhan Arikan,et al.  Maximum likelihood estimation of Gaussian mixture models using stochastic search , 2012, Pattern Recognit..

[56]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[57]  Chao Ren,et al.  Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting , 2014, Knowl. Based Syst..

[58]  Robert L. Smith,et al.  An American National Standard- IEEE Standard for Binary Floating-Point Arithmetic , 1985 .

[59]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[60]  Dada Emmanuel Gbenga,et al.  Understanding the Limitations of Particle Swarm Algorithm for Dynamic Optimization Tasks , 2016, ACM Comput. Surv..

[61]  Zhongzhi Shi,et al.  MPSO: Modified particle swarm optimization and its applications , 2018, Swarm Evol. Comput..

[62]  Chen-Yang Cheng,et al.  Particle swarm optimization with fitness adjustment parameters , 2017, Comput. Ind. Eng..

[63]  G. Wiselin Jiji,et al.  An enhanced particle swarm optimization with levy flight for global optimization , 2016, Appl. Soft Comput..

[64]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[65]  B. Walczak,et al.  Particle swarm optimization (PSO). A tutorial , 2015 .

[66]  B. Bochenek,et al.  Structural optimization for post-buckling behavior using particle swarms , 2006 .

[67]  Claudomiro Sales,et al.  A global expectation-maximization based on memetic swarm optimization for structural damage detection , 2016 .

[68]  Rolf Wanka,et al.  Particles prefer walking along the axes: experimental insights into the behavior of a particle swarm , 2013, GECCO '13 Companion.

[69]  Mamun Bin Ibne Reaz,et al.  A novel SVM-kNN-PSO ensemble method for intrusion detection system , 2016, Appl. Soft Comput..

[70]  Helbert E. Espitia,et al.  Statistical analysis for vortex particle swarm optimization , 2018, Appl. Soft Comput..

[71]  Shafaatunnur Hasan,et al.  MPSO: Median-oriented Particle Swarm Optimization , 2013, Appl. Math. Comput..

[72]  Cheng Wang,et al.  A novel improved particle swarm optimization algorithm based on individual difference evolution , 2017, Appl. Soft Comput..

[73]  P. N. Suganthan,et al.  Ensemble particle swarm optimizer , 2017, Appl. Soft Comput..

[74]  Fuhao Zhang,et al.  A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows , 2015, Sensors.

[75]  Marcos A. C. Oliveira,et al.  Towards a network-based approach to analyze particle swarm optimizers , 2014, 2014 IEEE Symposium on Swarm Intelligence.

[76]  Siti Mariyam Hj. Shamsuddin,et al.  Non-parametric particle swarm optimization for global optimization , 2015, Appl. Soft Comput..