Topolnogical classifier for detecting the emergence of epileptic seizures

ObjectiveAn innovative method based on topological data analysis is introduced for classifying EEG recordings of patients affected by epilepsy. We construct a topological space from a collection of EEGs signals using Persistent Homology; then, we analyse the space by Persistent entropy, a global topological feature, in order to classify healthy and epileptic signals.ResultsThe performance of the resulting one-feature-based linear topological classifier is tested by analysing the Physionet dataset. The quality of classification is evaluated in terms of the Area Under Curve (AUC) of the receiver operating characteristic curve. It is shown that the linear topological classifier has an AUC equal to $$97.2\%$$97.2% while the performance of a classifier based on Sample Entropy has an AUC equal to 62.0%.

[1]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[2]  Zhi Yang,et al.  A fast, robust algorithm for power line interference cancellation in neural recording , 2014, Journal of neural engineering.

[3]  R. Ho Algebraic Topology , 2022 .

[4]  Patrick E. McSharry,et al.  Comparison of predictability of epileptic seizures by a linear and a nonlinear method , 2003, IEEE Transactions on Biomedical Engineering.

[5]  Rocío González-Díaz,et al.  A new topological entropy-based approach for measuring similarities among piecewise linear functions , 2015, Signal Process..

[6]  Emanuela Merelli,et al.  A topological approach for multivariate time series characterization: the epileptic brain , 2016, BICT.

[7]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[8]  Ezio Bartocci,et al.  Model Checking Biological Oscillators , 2009, FBTC@ICALP.

[9]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[10]  Emanuela Merelli,et al.  RNN-based Model for Self-adaptive Systems - The Emergence of Epilepsy in the Human Brain , 2014, IJCCI.

[11]  Peter M. A. Sloot,et al.  Topological Characterization of Complex Systems: Using Persistent Entropy , 2015, Entropy.

[12]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[13]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[14]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[15]  Emanuela Merelli,et al.  Topological classification of small DC motors , 2015, 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI).

[16]  Rocío González-Díaz,et al.  An entropy-based persistence barcode , 2015, Pattern Recognit..

[17]  E. Basar,et al.  Wavelet entropy: a new tool for analysis of short duration brain electrical signals , 2001, Journal of Neuroscience Methods.

[18]  Pietro Liò,et al.  A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine , 2010 .

[19]  Emanuela Merelli,et al.  Characterisation of the Idiotypic Immune Network Through Persistent Entropy , 2014, ECCS.

[20]  Mark P. Richardson,et al.  Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity , 2014, PLoS Comput. Biol..

[21]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[22]  Marco Piangerelli,et al.  Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats , 2016, Toxics.

[23]  Moo K. Chung,et al.  Topological Data Analysis , 2012 .

[24]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[25]  Jorge Mateo Satos,et al.  A new method for removal of powerline interference in ECG and EEG recordings , 2015, Comput. Electr. Eng..

[26]  Yue Yang,et al.  Complex network-based time series analysis , 2008 .

[27]  Mikael Vejdemo-Johansson,et al.  javaPlex: a research platform for persistent homology , 2012 .

[28]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[29]  Leonidas D. Iasemidis,et al.  ■ REVIEW : Chaos Theory and Epilepsy , 1996 .

[30]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[31]  David E. Crowley,et al.  Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils , 2014, Front. Cell. Infect. Microbiol..

[32]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[33]  Rudolf Cymorr Kirby P. Martinez Epilepsy: A Case Study , 2017 .

[34]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[35]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[36]  Kaushik Majumdar,et al.  Synchronization Implies Seizure or Seizure Implies Synchronization? , 2013, Brain Topography.

[37]  Jedediah M. Singer,et al.  Quickest detection of drug-resistant seizures: An optimal control approach , 2011, Epilepsy & Behavior.

[38]  Marco Piangerelli,et al.  Pyrethroid Pesticide Metabolite in Urine and Microelements in Hair of Children Affected by Autism Spectrum Disorders: A Preliminary Investigation , 2016, International journal of environmental research and public health.

[39]  Paul J. Laurienti,et al.  The Brain as a Complex System: Using Network Science as a Tool for Understanding the Brain , 2011, Brain Connect..

[40]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[41]  Svetlana Lockwood,et al.  Topological Features in Cancer Gene Expression Data> , 2014, Pacific Symposium on Biocomputing.