A Two-Stage Combined Classifier in Scale Space Texture Classification

Textures often show multiscale properties and hence multiscale techniques are considered useful for texture analysis. Scale-space theory as a biologically motivated approach may be used to construct multiscale textures. In this paper various ways are studied to combine features on different scales for texture classification of small image patches. We use the N-jet of derivatives up to the second order at different scales to generate distinct pattern representations (DPR) of feature subsets. Each feature subset in the DPR is given to a base classifier (BC) of a two-stage combined classifier. The decisions made by these BCs are combined in two stages over scales and derivatives. Various combining systems and their significances and differences are discussed. The learning curves are used to evaluate the performances. We found for small sample sizes combining classifiers performs significantly better than combining feature spaces (CFS). It is also shown that combining classifiers performs better than the support vector machine on CFS in multiscale texture classification.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[5]  C. Eswaran,et al.  The effect of sub-sampling in scale space texture classification using combined classifiers , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[6]  Xianghua Xie,et al.  Handbook of Texture Analysis , 2008 .

[7]  Domènec Puig,et al.  Supervised texture classification by integration of multiple texture methods and evaluation windows , 2007, Image Vis. Comput..

[8]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  K. Ruba Soundar,et al.  Texture classification with combined rotation and scale invariant wavelet features , 2005, Pattern Recognit..

[10]  Cheng Wang,et al.  A novel extended local-binary-pattern operator for texture analysis , 2008, Inf. Sci..

[11]  Mehrdad J. Gangeh,et al.  Scale-Space Texture Classification Using Combined Classifiers , 2007, SCIA.

[12]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[13]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[14]  B Bram Platel,et al.  Exploring the deep structure of images , 2007 .

[15]  Robert P. W. Duin,et al.  A Matlab Toolbox for Pattern Recognition , 2004 .

[16]  Bram van Ginneken,et al.  Multi-scale texture classification from generalized locally orderless images , 2003, Pattern Recognit..

[17]  Yung-Chang Chen,et al.  Unsupervised segmentation of ultrasonic liver images by multiresolution fractal feature vector , 2005, Inf. Sci..

[18]  Chih-Fong Tsai,et al.  Image mining by spectral features: A case study of scenery image classification , 2007, Expert Syst. Appl..

[19]  Philippe Carré,et al.  Quaternionic wavelets for texture classification , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[20]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[21]  J. Koenderink,et al.  Cartesian differential invariants in scale-space , 1993, Journal of Mathematical Imaging and Vision.

[22]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Bo Hsiao,et al.  Automatic surface inspection using wavelet reconstruction , 2001, Pattern Recognit..

[24]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[25]  Mircea Nicolescu,et al.  An iterative multi-scale tensor voting scheme for perceptual grouping of natural shapes in cluttered backgrounds , 2009, Comput. Vis. Image Underst..

[26]  Adrião Duarte Dória Neto,et al.  Classification of multispectral images in coral environments using a hybrid of classifier ensembles , 2010, Neurocomputing.

[27]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[29]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Matti Pietikäinen,et al.  Image description using joint distribution of filter bank responses , 2009, Pattern Recognit. Lett..

[32]  Hiroshi Nagahashi,et al.  Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features , 2005, Scale-Space.

[33]  Dick de Ridder,et al.  Adaptive methods of image processing , 2001 .

[34]  J. Davis Statistical Pattern Recognition:Statistical Pattern Recognition , 2003 .

[35]  Yongjun Wu,et al.  Multiresolution Histograms for SVM-Based Texture Classification , 2005, ICIAR.

[36]  Marios S. Pattichis,et al.  Multiscale Amplitude-Modulation Frequency-Modulation (AM–FM) Texture Analysis of Ultrasound Images of the Intima and Media Layers of the Carotid Artery , 2011, IEEE Transactions on Information Technology in Biomedicine.

[37]  Hideki Noda,et al.  Texture classification based on Markov modeling in wavelet feature space , 2000, Image Vis. Comput..

[38]  Truong T. Nguyen,et al.  Multiresolution direction filterbanks: theory, design, and applications , 2005, IEEE Transactions on Signal Processing.

[39]  J. Preston Ξ-filters , 1983 .

[40]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[42]  Aapo Hyvärinen,et al.  Equivalence of Some Common Linear Feature Extraction Techniques for Appearance-based Object Recognition Tasks , 2022 .

[43]  Bram van Ginneken,et al.  Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung. , 2006, Medical physics.

[44]  Richard G. Baraniuk,et al.  Multiscale image segmentation using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[45]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[46]  Jacek M. Zurada,et al.  Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images , 1996, IEEE Trans. Medical Imaging.

[47]  Shutao Li,et al.  Comparison and fusion of multiresolution features for texture classification , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[48]  Song-Chun Zhu Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998 .

[49]  B. van Ginneken,et al.  Computer-aided diagnosis in high resolution CT of the lungs. , 2003, Medical physics.

[50]  Jun Liu,et al.  Texture classification using multiresolution Markov random field models , 1999, Pattern Recognit. Lett..

[51]  Chih-Jen Lin,et al.  Working Set Selection Using Second Order Information for Training Support Vector Machines , 2005, J. Mach. Learn. Res..

[52]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[53]  Yaonan Wang,et al.  Texture classification using the support vector machines , 2003, Pattern Recognit..

[54]  Hang Joon Kim,et al.  Support Vector Machines for Texture Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..