Automata and semigroups recognizing infinite words
暂无分享,去创建一个
[1] Gyula O. H. Katona,et al. Algebra, combinatorics, and logic in computer science , 1986 .
[2] Marcel Paul Schützenberger. A propos du relation rationelles fonctionnelles , 1972, ICALP.
[3] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[4] Wolfgang Thomas,et al. Languages, Automata, and Logic , 1997, Handbook of Formal Languages.
[5] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[6] Bertrand Le Saëc,et al. A Purely Algebraic Proof of McNaughton's Theorem on Infinite Words , 1991, FSTTCS.
[7] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[8] S. Safra,et al. On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[9] S. Safra. On The Complexity of w-Automata , 1988 .
[10] Yaacov Choueka,et al. Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..
[11] Nicolas Bedon. Automata, Semigroups and Recognizability of Words on Ordinals , 1998, Int. J. Algebra Comput..
[12] J. Richard Büchi,et al. The monadic second order theory of ω1 , 1973 .
[13] Berndt Farwer,et al. ω-automata , 2002 .
[14] Dominique Perrin,et al. Recent Results on Automata and Infinite Words , 1984, MFCS.
[15] J. R. Büchi,et al. The monadic second order theory of all countable ordinals , 1973 .
[16] M. Rabin. Decidability of second-order theories and automata on infinite trees , 1968 .
[17] Olivier Carton,et al. Unambiguous Büchi Automata , 2000, LATIN.
[18] Jean-Pierre Pécuchet. Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1988, Theor. Comput. Sci..
[19] Dominique Perrin. An introduction to finite automata on infinite words , 1984, Automata on Infinite Words.
[20] Yaacov Choueka. Finite Automata, Definable Sets, and Regular Expressions over omega^n-Tapes , 1978, J. Comput. Syst. Sci..
[21] Olivier Carton,et al. An Eilenberg Theorem for Words on Countable Ordinals , 1998, LATIN.
[22] Dominique Perrin,et al. Varietes de Semigroupes et Mots Infinis , 1983, ICALP.
[23] Thomas Wilke,et al. Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.
[24] André Arnold,et al. A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..
[25] Jean-Eric Pin,et al. Semigroups and automata on infinite words , 2007 .
[26] Andrzej Wlodzimierz Mostowski. Determinancy of Sinking Automata on Infinite Trees and Inequalities Between Various Rabin's Pair Indices , 1982, Inf. Process. Lett..
[27] Jean-Pierre Péchuchet. Etude Syntaxique des Parties Reconnaissables de Mots Infinis , 1986 .
[28] Wolfgang Thomas,et al. Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..
[29] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[30] J. Richard Büchi. Transfinite Automata Recursions and Weak Second Order Theory of Ordinals , 1990 .
[31] Jean-Pierre Pécuchet. Variétés de Semis Groupes et Mots Infinis , 1986, STACS.
[32] Jean-Éric Pin. Positive Varieties and Infinite Words , 1998, LATIN.
[33] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[34] Nicolas Bedon,et al. Finite Automata and Ordinals , 1996, Theor. Comput. Sci..
[35] Bertrand Le Saëc,et al. Semigroups with Idempotent stabilizers and Applications to Automata Theory , 1991, Int. J. Algebra Comput..
[36] Thomas Wilke,et al. An Algebraic Theory for Regular Languages of Finite and Infinite Words , 1993, Int. J. Algebra Comput..
[37] Thomas Wilke. An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.
[38] Ludwig Staiger,et al. Ω-languages , 1997 .
[39] Danièle Beauquier,et al. Codeterministic Automata on Infinite Words , 1985, Inf. Process. Lett..
[40] Véronique Bruyère,et al. Automata on Linear Orderings , 2002, Developments in Language Theory.
[41] Dominique Perrin,et al. Finite Automata , 1958, Philosophy.