On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors
暂无分享,去创建一个
Raf Vandebril | Karl Meerbergen | Nick Vannieuwenhoven | J. Nicaise | K. Meerbergen | R. Vandebril | J. Nicaise | N. Vannieuwenhoven | Johannes Nicaise
[1] Raf Vandebril,et al. A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..
[2] Peter Lancaster,et al. The theory of matrices , 1969 .
[3] Rasmus Bro,et al. Multi-way Analysis with Applications in the Chemical Sciences , 2004 .
[4] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[5] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[6] Alwin Stegeman,et al. Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms , 2012, SIAM J. Matrix Anal. Appl..
[7] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[8] F. Chinesta,et al. On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems , 2010 .
[9] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[10] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[11] Alessandro Gimigliano,et al. Secant varieties of ℙ¹×\cdots×ℙ¹ (-times) are NOT defective for ≥5 , 2011 .
[12] G. W. STEWARTt. ON THE EARLY HISTORY OF THE SINGULAR VALUE DECOMPOSITION * , 2022 .
[13] E. Davidson,et al. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .
[14] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[15] Grazia Lotti,et al. Approximate Solutions for the Bilinear Form Computational Problem , 1980, SIAM J. Comput..
[16] C. Bocci,et al. Refined methods for the identifiability of tensors , 2013, 1303.6915.
[17] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[18] Chris Peterson,et al. Induction for secant varieties of Segre varieties , 2006, math/0607191.
[19] Adrien Leygue,et al. An overview of the proper generalized decomposition with applications in computational rheology , 2011 .
[20] P. Paatero. Construction and analysis of degenerate PARAFAC models , 2000 .
[21] A. Stegeman. Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.
[22] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[23] J. Huisman. Real abelian varieties with complex multiplication , 1992 .
[24] Tamara G. Kolda,et al. Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..
[25] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[26] K. Meerbergen,et al. A probabilistic numerical algorithm based on Terracini's lemma for proving nondefectivity of Segre varieties , 2012 .
[27] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[28] Alwin Stegeman,et al. Low-Rank Approximation of Generic p˟q˟2 Arrays and Diverging Components in the Candecomp/Parafac Model , 2008, SIAM J. Matrix Anal. Appl..
[29] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[30] T. Willmore. Algebraic Geometry , 1973, Nature.
[31] Yousef Saad,et al. On the Tensor SVD and the Optimal Low Rank Orthogonal Approximation of Tensors , 2008, SIAM J. Matrix Anal. Appl..
[32] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[33] Ju. A. Drozd,et al. Tame and wild matrix problems , 1980 .
[34] Alwin Stegeman,et al. A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[35] Tamara G. Kolda,et al. A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition , 2002, SIAM J. Matrix Anal. Appl..
[36] A. Geramita,et al. Ranks of tensors, secant varieties of Segre varieties and fat points , 2002 .
[37] A. Stegeman. Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .
[38] Alessandro Terracini,et al. Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario , 1911 .
[39] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[40] Athina P. Petropulu,et al. Joint singular value decomposition - a new tool for separable representation of images , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[41] Alessandro Gimigliano,et al. Secant Varieties of (P ^1) X .... X (P ^1) (n-times) are NOT Defective for n \geq 5 , 2008 .
[42] Giorgio Ottaviani,et al. On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..
[43] Morten Mørup,et al. Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..
[44] Michael Clausen,et al. Typical Tensorial Rank , 1997 .
[45] L. Nazarova. REPRESENTATIONS OF QUIVERS OF INFINITE TYPE , 1973 .
[46] Fulvio Gesmundo. An asymptotic bound for secant varieties of Segre varieties , 2012, 1209.1732.
[47] J. M. Landsberg,et al. On the third secant variety , 2011, 1111.7005.
[48] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[49] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[50] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[51] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[52] G. Ottaviani,et al. On the Alexander–Hirschowitz theorem , 2007, math/0701409.
[53] M. SIAMJ.. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .
[54] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[55] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[56] Dario Bini,et al. Border Rank of a pxqx2 Tensor and the Optimal Approximation od a Pair of Bilinear Forms , 1980, ICALP.
[57] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[58] F. R. Gantmakher. The Theory of Matrices , 1984 .
[59] Lieven De Lathauwer,et al. A Method to Avoid Diverging Components in the Candecomp/Parafac Model for Generic I˟J˟2 Arrays , 2008, SIAM J. Matrix Anal. Appl..
[60] D. Simson,et al. Elements of the Representation Theory of Associative Algebras , 2007 .
[61] Jorge N. Tendeiro,et al. Some New Results on Orthogonally Constrained Candecomp , 2011, J. Classif..
[62] Raf Vandebril,et al. A randomized algorithm for testing nonsingularity of structured matrices with an application to asserting nondefectivity of Segre varieties , 2015 .
[63] Dario Bini. Relations between exact and approximate bilinear algorithms. Applications , 1980 .
[64] J. Cardoso,et al. Blind beamforming for non-gaussian signals , 1993 .
[65] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[66] J. Jaja. An Addendum to Kronecker’s Theory of Pencils , 1979 .
[67] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[68] Lieven De Lathauwer,et al. Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..
[69] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[70] Daniel Kressner,et al. Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..
[71] Claus Michael Ringel,et al. Representations of finite dimensional algebras and related topics in Lie theory and geometry , 2004 .
[72] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1989 .