Post-eruptive mobility of lithium in volcanic rocks

[1]  E. Watson,et al.  The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth , 2017 .

[2]  G. Mahood,et al.  Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins , 2017, Nature Communications.

[3]  E. Watson Diffusive fractionation of volatiles and their isotopes during bubble growth in magmas , 2017, Contributions to Mineralogy and Petrology.

[4]  P. Wallace,et al.  Volatiles and Exsolved Vapor in Volcanic Systems , 2017 .

[5]  P. Tomascak,et al.  Advances in Lithium Isotope Geochemistry , 2015 .

[6]  Michael C. Rowe,et al.  Groundmass crystallisation and cooling rates of lava-like ignimbrites: the Grey’s Landing ignimbrite, southern Idaho, USA , 2015, Bulletin of Volcanology.

[7]  U. Schaltegger,et al.  Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions , 2015, Scientific Reports.

[8]  F. Holtz,et al.  The effect of lithium on the viscosity of pegmatite forming liquids , 2015 .

[9]  W. Minarik,et al.  Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts , 2015, Contributions to Mineralogy and Petrology.

[10]  D. Garbe‐Schönberg,et al.  Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge , 2015 .

[11]  F. Holtz,et al.  The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system , 2015, Contributions to Mineralogy and Petrology.

[12]  J. Blundy,et al.  A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure, temperature and composition , 2014, American Journal of Science.

[13]  M. Storey,et al.  Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA , 2014 .

[14]  J. Wolff,et al.  Rhyolitic volcanism of the central Snake River Plain: a review , 2013, Bulletin of Volcanology.

[15]  H. Meyer,et al.  Li, Be, B concentrations and δ7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece) , 2013, Contributions to Mineralogy and Petrology.

[16]  Michael C. Rowe,et al.  Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis , 2012 .

[17]  Y. Podladchikov,et al.  Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs , 2012 .

[18]  J. Baker,et al.  Lithium concentration gradients in feldspar and quartz record the final minutes of magma ascent in an explosive supereruption , 2012 .

[19]  L. A. Coogan,et al.  Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents , 2011 .

[20]  Kathryn Erin Watts,et al.  Large-volume rhyolite genesis in caldera complexes of the Snake River Plain , 2011 .

[21]  T. Barry,et al.  Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: The Twin Falls eruptive centre, central Snake River Plain , 2010 .

[22]  A. Clarke,et al.  New insight into explosive volcanic eruptions: Connecting crystal-scale chemical changes with conduit-scale dynamics , 2009 .

[23]  K. Gallagher,et al.  Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling , 2009 .

[24]  F. Innocenti,et al.  Drying and dying of a subducted slab: Coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism , 2008 .

[25]  C. Langmuir,et al.  Lithium isotopes in global mid-ocean ridge basalts , 2008 .

[26]  D. Ionov,et al.  Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories , 2008 .

[27]  T. Barry,et al.  ‘Snake River (SR)-type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions , 2007, Bulletin of Volcanology.

[28]  N. Rogers,et al.  High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems , 2007 .

[29]  C. Graham,et al.  Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks , 2007 .

[30]  J. Pallister,et al.  Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington , 2007 .

[31]  T. Grove,et al.  Lithium isotope fractionation in the southern Cascadia subduction zone , 2006 .

[32]  Alexander L. Thomas,et al.  Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts , 2006, Nature.

[33]  W. McDonough,et al.  Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota , 2006 .

[34]  P. Beck,et al.  Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites , 2006 .

[35]  S. Chakraborty,et al.  Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry [rapid communication] , 2005 .

[36]  E. Christiansen,et al.  Contrasting processes in silicic magma chambers: evidence from very large volume ignimbrites , 2005, Geological Magazine.

[37]  W. McIntosh,et al.  Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA , 2005 .

[38]  A. Halliday,et al.  Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS , 2004 .

[39]  L. Borg,et al.  Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades , 2004 .

[40]  S. Black,et al.  Geochemical Precursors to Volcanic Activity at Mount St. Helens, USA , 2004, Science.

[41]  J. Barrat,et al.  Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? , 2004 .

[42]  E. Watson,et al.  Isotope fractionation by chemical diffusion between molten basalt and rhyolite , 2003 .

[43]  D. Teagle,et al.  Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A , 2002 .

[44]  S. Goldstein,et al.  The control of Lithium Budgets in Island Arcs , 2002 .

[45]  M. Kastner,et al.  Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes , 2000 .

[46]  R. Walker,et al.  The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS , 1999 .

[47]  E. Nakamura,et al.  Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones , 1998 .

[48]  B. J. Giletti,et al.  Alkali diffusion in plagioclase feldspar , 1997 .

[49]  H. Svec,et al.  A secondary isotopic standard for 6Li/7Li determinations , 1973 .

[50]  E. Yuliwati,et al.  A Review , 2019, Current Trends and Future Developments on (Bio-) Membranes.

[51]  A. Kent,et al.  Rhyolite Generation prior to a Yellowstone Supereruption: Insights from the Island Park–Mount Jackson Rhyolite Series , 2017 .

[52]  A. Schmitt,et al.  Post-caldera Volcanism at the Heise Volcanic Field: Implications for Petrogenetic Models , 2017 .

[53]  R. Rudnick,et al.  Lithium Isotope Geochemistry , 2017 .

[54]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[55]  W. Rose,et al.  Volatile loss from melt inclusions in pyroclasts of differing sizes , 2012, Contributions to Mineralogy and Petrology.

[56]  J. Wolff,et al.  Evaluation of models for the origin of Miocene low-δ18O rhyolites of the Yellowstone/Columbia River Large Igneous Province , 2012 .

[57]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[58]  T. Elliott,et al.  Li isotope fractionation in peridotites and mafic melts , 2007 .

[59]  E. Nakamura,et al.  Elemental fractionation in lavas during post-eruptive degassing : Evidence from trachytic lavas, Rishiri Volcano, Japan , 2006 .

[60]  P. Becka,et al.  Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks : The case of pyroxene phenocrysts from nakhlite meteorites , 2006 .

[61]  B. Nash,et al.  The Cougar Point Tuff: Implications for Thermochemical Zonation and Longevity of High-Temperature, Large-Volume Silicic Magmas of the Miocene Yellowstone Hotspot , 2004 .

[62]  Robert L. Christiansen,et al.  The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana , 2001 .

[63]  K. Gillis,et al.  Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans , 1992 .