Computation of electronic structure of clean and adatom-covered Ag (0 0 1) surfaces by means of TB-LMTO and recursion method

[1]  V. Drchal,et al.  On the calculation of the surface Green function by the tight-binding linear muffin-tin orbital method , 1989 .

[2]  Smith,et al.  Density-of-states calculations within the recursion method. , 1987, Physical review. B, Condensed matter.

[3]  Kudrnovsk,et al.  Canonical description of electron states in random alloys. , 1987, Physical review. B, Condensed matter.

[4]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[5]  Smith,et al.  Recursion method in the k-space representation. , 1986, Physical review. B, Condensed matter.

[6]  Andersen,et al.  Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. , 1986, Physical review. B, Condensed matter.

[7]  J. Masek,et al.  The analytical deconvolution technique for the green function recursion expansion , 1986 .

[8]  M. Scheffler,et al.  Calculation of the Green's function for a crystal surface or interface , 1985 .

[9]  B. Velicky,et al.  Theory of chemisorption , 1985 .

[10]  Testa,et al.  Continued-fraction coefficients in the presence of critical points. , 1985, Physical review. B, Condensed matter.

[11]  B. Velicky,et al.  Electronic structure of semiinfinite crystals with substitutional disorder in surface layer , 1977 .

[12]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .

[13]  P. Löwdin Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism , 1962 .

[14]  D. Pettifor,et al.  The Recursion Method and Its Applications , 1986 .