Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy

[1]  Xingbao Zhu,et al.  Improved electrochemical performance of SrCo0.8Fe0.2O3−δ–La0.45Ce0.55O2−δ composite cathodes for IT-SOFC , 2007 .

[2]  S. Chan,et al.  (La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3)x-modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells , 2006 .

[3]  S. Jiang,et al.  A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells , 2006 .

[4]  V. Birss,et al.  Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes , 2006 .

[5]  A. Virkar,et al.  Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5-δ cathode , 2005 .

[6]  F. Prado,et al.  High-temperature thermodynamic and transport properties of the Sr3Fe2O6+δ mixed conductor , 2005 .

[7]  H. Hwang,et al.  Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs , 2005 .

[8]  Andreas Hierlemann,et al.  Impedance characterization and modeling of electrodes for biomedical applications , 2005, IEEE Transactions on Biomedical Engineering.

[9]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells. Part I. Variation of composition , 2005 .

[10]  Juergen Fleig On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.

[11]  T. He,et al.  The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte , 2005 .

[12]  V. Birss,et al.  A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes , 2005 .

[13]  B. Yi,et al.  Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells , 2005 .

[14]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[15]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[16]  V. Kharton,et al.  Ion–electron transport in strontium ferrites: relationships with structural features and stability , 2004 .

[17]  Khiam Aik Khor,et al.  Simulation of a composite cathode in solid oxide fuel cells , 2004 .

[18]  Meilin Liu,et al.  LSM-GDC Composite Cathodes Derived from a Sol-Gel Process Effect of Microstructure on Interfacial Polarization Resistance , 2003 .

[19]  Scott A. Barnett,et al.  Operation of anode-supported solid oxide fuel cells on methane and natural gas , 2003 .

[20]  Hong-Ki Lee Electrochemical characteristics of La1−xSrxMnO3 for solid oxide fuel cell , 2003 .

[21]  E. P. Murray,et al.  Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes , 2002 .

[22]  E. P. Murray,et al.  (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells , 2001 .

[23]  Harumi Yokokawa,et al.  Electrode Reaction of La1 − x Sr x CoO3 − d Cathodes on La0.8Sr0.2Ga0.8Mg0.2 O 3 − y Electrolyte in Solid Oxide Fuel Cells , 2001 .

[24]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[25]  F. Tietz,et al.  Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes , 2000 .

[26]  N. Wu,et al.  Oxygen Surface Exchange in Mixed Ionic Electronic Conductors: Application to La0.5Sr0.5Fe0.8Ga0.2 O 3 − δ , 2000 .

[27]  Y. Matsuzaki,et al.  Relationship between the steady-state polarization of the SOFC air electrode, La0.6Sr0.4MnO3+δ/YSZ, and its complex impedance measured at the equilibrium potential , 1999 .

[28]  Ch. Ftikos,et al.  Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides , 1999 .

[29]  John A. Kilner,et al.  Optimisation of composite cathodes for intermediate temperature SOFC applications , 1999 .

[30]  San Ping Jiang,et al.  The electrochemical performance of LSM/zirconia–yttria interface as a function of a-site non-stoichiometry and cathodic current treatment , 1999 .

[31]  H. Ono,et al.  Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method , 1999 .

[32]  B. Steele,et al.  Properties of La0.6Sr0.4Co0.2Fe0.8O3-x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes - II. Role of oxygen exchange and diffusion , 1998 .

[33]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[34]  B. Steele,et al.  The effect of thermal treatment on the resistance of LSCF electrodes on gadolinia doped ceria electrolytes , 1996 .

[35]  Tatsumi Ishihara,et al.  Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation , 1995 .

[36]  Junichiro Mizusaki,et al.  Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3 / YSZ , 1991 .

[37]  J. Lee,et al.  Citrate method synthesis, characterization and mixed electronic–ionic conduction properties of La0.6Sr0.4Co0.8Fe0.2O3 perovskite-type complex oxides , 2004 .

[38]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .