On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra

A theory for calculating time– and frequency–domain optical spectra of pigment–protein complexes is presented using a density matrix approach. Non-Markovian effects in the exciton–vibrational coupling are included. A correlation function is deduced from the simulation of 1.6 K fluorescence line narrowing spectra of a monomer pigment–protein complex (B777), and then used to calculate fluorescence line narrowing spectra of a dimer complex (B820). A vibrational sideband of an excitonic transition is obtained, a distinct non-Markovian feature, and agrees well with experiment on B820 complexes. The theory and the above correlation function are used elsewhere to make predictions and compare with data on time–domain pump–probe spectra and frequency–domain linear absorption, circular dichroism and fluorescence spectra of Photosystem II reaction centers.

[1]  R. Monshouwer,et al.  Temperature dependence of electron-vibronic spectra of photosynthetic systems. Computer simulations and comparison with experiment , 1995 .

[2]  Fabrice Rappaport,et al.  Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy , 1993, Nature.

[3]  S. Mukamel,et al.  Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes , 1998 .

[4]  W. W. Parson,et al.  Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents , 1991 .

[5]  THEORETICAL STUDY OF TIME-RESOLVED FLUORESCENCE ANISOTROPY FROM COUPLED CHROMOPHORE PAIRS , 1994, chem-ph/9411004.

[6]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[7]  R. W. Visschers,et al.  Ultrafast dynamics within the B820 subunit from the core (LH-1) antenna complex of Rs. rubrum , 1996 .

[8]  P. Bullough,et al.  The 8.5 A projection map of the light‐harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. , 1995, The EMBO journal.

[9]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[10]  S. Mukamel,et al.  Simulation of three–pulse–echo and fluorescence depolarization in photosynthetic aggregates , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  R. Marcus,et al.  Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model , 1999 .

[12]  I. Barvík,et al.  Towards proper parametrization in the exciton transfer and relaxation problem. II. Trimer , 2001 .

[13]  M. Seibert,et al.  Energy transfer dynamics of the B800—B850 antenna complex of Rhodobacter sphaeroides: a hole burning study , 1991 .

[14]  F. van Mourik,et al.  Spectroscopy and structure of bacteriochlorophyll dimers. I. Structural consequences of nonconservative circular dichroism spectra. , 1997, Biophysical journal.

[15]  E. Peterman,et al.  Electron-Phonon Coupling and Vibronic Fine Structure of Light-Harvesting Complex II of Green Plants: Temperature Dependent Absorption and High-Resolution Fluorescence Spectroscopy , 1997 .

[16]  S. Mukamel,et al.  Four-wave mixing and luminescence of confined excitons in molecular aggregates and nanostructures. Many-body Green function approach , 1995 .

[17]  H. Mori,et al.  Statistical-Mechanical Theory of Random Frequency Modulations and Generalized Brownian Motions , 1976 .

[18]  R. van Grondelle,et al.  Energy transfer and trapping in photosystem I. , 2001, Biochimica et biophysica acta.

[19]  V. May,et al.  Strong-field approach to ultrafast pump-probe spectra: dye molecules in solution , 1997 .

[20]  J. Freed Generalized Cumulant Expansions and Spin‐Relaxation Theory , 1968 .

[21]  F. Shibata,et al.  Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .

[22]  Long-time quantum simulation of the primary charge separation in bacterial photosynthesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Tõnu Pullerits,et al.  Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit , 1999 .

[24]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[25]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[26]  E. Peterman,et al.  The nature of the excited state of the reaction center of photosystem II of green plants: a high-resolution fluorescence spectroscopy study. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Lax The Franck‐Condon Principle and Its Application to Crystals , 1952 .

[28]  V. May,et al.  Simulations of frequency-domain spectra: structure-function relationships in photosynthetic pigment-protein complexes. , 2000, Physical review letters.

[29]  R. W. Visschers,et al.  SPECTRAL HOLE BURNING AND FLUORESCENCE LINE NARROWING IN SUBUNITS OF THE LIGHT-HARVESTING COMPLEX LH1 OF PURPLE BACTERIA , 1999 .

[30]  T. Mančal,et al.  Retardation effects in the dynamics of open molecular systems , 2001 .

[31]  Harold L. Friedman A Course in Statistical Mechanics , 1985 .

[32]  J. Ross,et al.  Statistical reduction for strongly driven simple quantum systems , 1978 .

[33]  S. Mukamel,et al.  Time‐resolved fluorescence and hole‐burning line shapes of solvated molecules: Longitudinal dielectric relaxation and vibrational dynamics , 1987 .

[34]  Thomas Renger,et al.  Ultrafast excitation energy transfer dynamics in photosynthetic pigment–protein complexes , 2001 .

[35]  G. Fleming,et al.  Excitation Transfer in the Core Light-Harvesting Complex (LH-1) of Rhodobacter sphaeroides: An Ultrafast Fluorescence Depolarization and Annihilation Study , 1995 .

[36]  V. Sundström,et al.  Fluorescence depolarization dynamics in the B850 complex of purple bacteria , 2002 .

[37]  R. Silbey,et al.  Exciton–Phonon Interactions in Molecular Crystals , 1970 .

[38]  M. Schreiber,et al.  Dissipative vibrational dynamics in a curve–crossing system , 1994 .

[39]  R. Cogdell,et al.  NONPHOTOCHEMICAL HOLE BURNING OF THE B800‐B850 ANTENNA COMPLEX OF Rhodopseudomonas acidophila , 1993 .

[40]  H. Fidder,et al.  Coherent nuclear motions in light‐harvesting pigments and dye molecules, probed by ultrafast spectroscopy , 1995 .

[41]  R. Marcus,et al.  Photophysical Properties of PS-2 Reaction Centers and a Discrepancy in Exciton Relaxation Times† , 2002 .

[42]  D. Klug,et al.  Subpicosecond equilibration of excitation energy in isolated photosystem II reaction centers. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  F. Shibata,et al.  Quantal master equation valid for any time scale , 1977 .

[44]  R. W. Visschers,et al.  Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlet-triplet annihilation on the B820 subunit form of Rhodospirillum rubrum , 1991 .

[45]  James Barber,et al.  Revealing the structure of the oxygen-evolving core dimer of photosystem II by cryoelectron crystallography , 1999, Nature Structural Biology.

[46]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[47]  K. Blum Density Matrix Theory and Applications , 1981 .

[48]  W. F. Beck,et al.  Excited-state vibrational coherence and anisotropy decay in the bacteriochlorophyll a dimer protein B820 , 1998 .

[49]  H. Haken Quantum field theory of solids: An introduction , 1976 .

[50]  R. Silbey,et al.  Local and nonlocal approximation for a simple quantum system , 2001 .

[51]  Seogjoo J. Jang,et al.  Characterization of the Static Disorder in the B850 Band of LH2 , 2001 .

[52]  J. Voigt,et al.  Qy-Level Structure and Dynamics of Solubilized Light-Harvesting Complex II of Green Plants: Pressure and Hole Burning Studies , 1999 .

[53]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[54]  Gerald J. Small,et al.  Red antenna states of photosystem I from cyanobacterium Synechococcus elongatus: a spectral hole burning study , 2002 .

[55]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[56]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[57]  N. Makri,et al.  Short-Range Coherence in the Energy Transfer of Photosynthetic Light-Harvesting Systems , 1999 .

[58]  S. Mukamel,et al.  Solvent Reorganization in Long-Range Electron Transfer: Density Matrix Approach , 1998 .

[59]  N. G. Van Kampen,et al.  A cumulant expansion for stochastic linear differential equations. I , 1974 .

[60]  S. Mukamel Non-markovian theory of molecular relaxation. I. Vibrational relaxation and dephasing in condensed phases , 1979 .

[61]  S. Rice,et al.  Frenkel Excitons in a Vibrating Molecular Crystal , 1970 .

[62]  M. Wasielewski,et al.  Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach , 1994 .

[63]  R. Grondelle,et al.  Understanding the Energy Transfer Function of LHCII, the Major Light-Harvesting Complex of Green Plants† , 2001 .

[64]  J. Voigt,et al.  Analysis of phonon structure in line-narrowed optical spectra , 1999 .

[65]  Christoph Meier,et al.  Non-Markovian evolution of the density operator in the presence of strong laser fields , 1999 .

[66]  G. Small,et al.  Excited-state structure and energy-transfer dynamics of the bacteriochlorophyll a antenna complex from Prosthecochloris aestuarii , 1991 .

[67]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[68]  V. May,et al.  MULTIPLE EXCITON EFFECTS IN MOLECULAR AGGREGATES : APPLICATION TO A PHOTOSYNTHETIC ANTENNA COMPLEX , 1997 .

[69]  S. Mukamel Quantum vs classical calculation of nonlinear spectra‐reduced dynamics and intramolecular entropy , 1983 .

[70]  James Barber,et al.  Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution , 1998, Nature.

[71]  M. Groot,et al.  Subpicosecond Transient Absorption Difference Spectroscopy on the Reaction Center of Photosystem II: Radical Pair Formation at 77 K , 1995 .

[72]  R. W. Visschers,et al.  Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. , 1991, Biochemistry.

[73]  R. Hochstrasser,et al.  Spectroscopy and Excitation Dynamics of Condensed Molecular Systems , 1983 .

[74]  E. Knapp Lineshapes of molecular aggregates, exchange narrowing and intersite correlation , 1984 .

[75]  T. Mančal,et al.  Interplay of non-Markovian relaxation and ultrafast optical state preparation in molecular systems: The Laguerre polynomial method , 2001 .

[76]  G. Fleming,et al.  Ultrafast exciton dynamics of J-aggregates in room temperature solution studied by third-order nonlinear optical spectroscopy and numerical simulation based on exciton theory , 2001 .

[77]  R. Monshouwer,et al.  Time-resolved absorption difference spectroscopy of the LH-1 antenna of Rhodopseudomonas viridis. , 1998 .

[78]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[79]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[80]  M. Toda,et al.  In: Statistical physics II , 1985 .

[81]  Gerald J. Small,et al.  The Red-Absorbing Chlorophyll a Antenna States of Photosystem I: A Hole-Burning Study of Synechocystis sp. PCC 6803 and Its Mutants , 2000 .

[82]  D. Klug,et al.  Exciton equilibration induced by phonons: theory and application to PS II reaction centers. , 1997 .

[83]  Ryogo Kubo,et al.  Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal , 1955 .