A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data

Abstract The Cancer Genome Atlas (TCGA) is a publicly funded project that aims to catalog and discover major cancer-causing genomic alterations with the goal of creating a comprehensive ‘atlas’ of cancer genomic profiles. The availability of this genome-wide information provides an unprecedented opportunity to expand our knowledge of tumourigenesis. Computational analytics and mining are frequently used as effective tools for exploring this byzantine series of biological and biomedical data. However, some of the more advanced computational tools are often difficult to understand or use, thereby limiting their application by scientists who do not have a strong computational background. Hence, it is of great importance to build user-friendly interfaces that allow both computational scientists and life scientists without a computational background to gain greater biological and medical insights. To that end, this survey was designed to systematically present available Web-based tools and facilitate the use TCGA data for cancer research.

[1]  International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome , 2004 .

[2]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[3]  Stein Aerts,et al.  Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia , 2012, Nature Genetics.

[4]  Robert Huether,et al.  The genomic landscape of hypodiploid acute lymphoblastic leukemia , 2013, Nature Genetics.

[5]  J. Olsen,et al.  In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth , 2014, Oncogene.

[6]  Levi A Garraway,et al.  Genomics-driven oncology: framework for an emerging paradigm. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Izaskun Mallona,et al.  Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer , 2015, Epigenetics & Chromatin.

[8]  Steven J. M. Jones,et al.  Integrated genomic and molecular characterization of cervical cancer , 2017, Nature.

[9]  S. Madhavan,et al.  Genome-wide multi-omics profiling of colorectal cancer identifies immune determinants strongly associated with relapse , 2013, Front. Genet..

[10]  Hsien-Da Huang,et al.  MethHC: a database of DNA methylation and gene expression in human cancer , 2014, Nucleic Acids Res..

[11]  Zhenzhen Huang,et al.  Identification of Gene Expression Pattern Related to Breast Cancer Survival Using Integrated TCGA Datasets and Genomic Tools , 2015, BioMed research international.

[12]  Jana Jeschke,et al.  MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data , 2015, BMC Genomics.

[13]  Sung-Liang Yu,et al.  A Four-Gene Signature from NCI-60 Cell Line for Survival Prediction in Non–Small Cell Lung Cancer , 2009, Clinical Cancer Research.

[14]  Joel H. Saltz,et al.  Research and applications: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data , 2013, J. Am. Medical Informatics Assoc..

[15]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[16]  Stephen M. Moore,et al.  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository , 2013, Journal of Digital Imaging.

[17]  Hanlee P. Ji,et al.  The Cancer Genome Atlas Clinical Explorer: a web and mobile interface for identifying clinical–genomic driver associations , 2015, Genome Medicine.

[18]  T. Roskams,et al.  Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery , 2012, BMC Cancer.

[19]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  Cheng Li,et al.  GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses , 2017, Nucleic Acids Res..

[21]  A. Lánczky,et al.  miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients , 2016, Breast Cancer Research and Treatment.

[22]  Bahram Parvin,et al.  Invariant Delineation of Nuclear Architecture in Glioblastoma Multiforme for Clinical and Molecular Association , 2013, IEEE Transactions on Medical Imaging.

[23]  Robert Brown,et al.  TCGASpliceSeq a compendium of alternative mRNA splicing in cancer , 2015, Nucleic Acids Res..

[24]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[25]  Chad J. Creighton,et al.  UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses , 2017, Neoplasia.

[26]  Bin Tean Teh,et al.  Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. , 2017, Cancer discovery.

[27]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[28]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[29]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[30]  Michael P. Schroeder,et al.  IntOGen-mutations identifies cancer drivers across tumor types , 2013, Nature Methods.

[31]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[32]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[33]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[34]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[35]  Paul L. Roebuck,et al.  TANRIC: An Interactive Open Platform to Explore the Function of lncRNAs in Cancer. , 2015, Cancer research.

[36]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[37]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[38]  I. Tan,et al.  Genetics: An 18-gene signature (ColoPrint®) for colon cancer prognosis , 2011, Nature Reviews Clinical Oncology.

[39]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[40]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[41]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[42]  Yoo Jin Jung,et al.  The transcriptional landscape and mutational profile of lung adenocarcinoma , 2012, Genome research.

[43]  E. Birney,et al.  A small cell lung cancer genome reports complex tobacco exposure signatures , 2009, Nature.

[44]  Adam Godzik,et al.  Cancer3D: understanding cancer mutations through protein structures , 2014, Nucleic Acids Res..

[45]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[46]  Xin Wei Wang,et al.  Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. , 2006, Cancer cell.

[47]  Lin Li,et al.  Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma , 2013, Genome research.

[48]  L. Wessels,et al.  OncoScape: Exploring the cancer aberration landscape by genomic data fusion , 2016, Scientific Reports.

[49]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[50]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[51]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[52]  Po-Jung Huang,et al.  Vanno: A Visualization‐Aided Variant Annotation Tool , 2015, Human mutation.

[53]  J. Herman,et al.  Genomic and Epigenomic Integration Identifies a Prognostic Signature in Colon Cancer , 2011, Clinical Cancer Research.

[54]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[55]  Riten Mitra,et al.  Zodiac: A Comprehensive Depiction of Genetic Interactions in Cancer by Integrating TCGA Data. , 2015, Journal of the National Cancer Institute.

[56]  Jun Li,et al.  TCPA: a resource for cancer functional proteomics data , 2013, Nature Methods.

[57]  Olivia Alder,et al.  Genomic Subtypes of Non-invasive Bladder Cancer with Distinct Metabolic Profile and Female Gender Bias in KDM6A Mutation Frequency. , 2017, Cancer cell.

[58]  G. Nolan,et al.  Computational solutions to large-scale data management and analysis , 2010, Nature Reviews Genetics.

[59]  Chirayu Pankaj Goswami,et al.  PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data , 2012, Journal of Clinical Bioinformatics.

[60]  Michael Snyder,et al.  Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction , 2018, Bioinform..

[61]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[62]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[63]  Zhifu Sun,et al.  A Gene Expression Signature Predicts Survival of Patients with Stage I Non-Small Cell Lung Cancer , 2006, PLoS medicine.

[64]  S. Nishizuka,et al.  Reverse-phase protein lysate microarrays for cell signaling analysis , 2008, Nature Protocols.

[65]  Voichita D. Marinescu,et al.  Efficient exploration of pan-cancer networks by generalized covariance selection and interactive web content , 2015, Nucleic acids research.

[66]  Benjamin J. Raphael,et al.  Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin , 2014, Cell.

[67]  E. Barrey,et al.  Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses , 2017, BMC Genomics.

[68]  Chirayu Pankaj Goswami,et al.  PROGgeneV2: enhancements on the existing database , 2014, BMC Cancer.

[69]  Peng Qiu,et al.  GDISC: a web portal for integrative analysis of gene‐drug interaction for survival in cancer , 2017, Bioinform..

[70]  Tao Xie,et al.  Cell Index Database (CELLX): A Web Tool for Cancer Precision Medicine , 2014, Pacific Symposium on Biocomputing.

[71]  Parantu K. Shah,et al.  canEvolve: A Web Portal for Integrative Oncogenomics , 2013, PloS one.

[72]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[73]  Ugur Dogrusoz,et al.  PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data , 2017, Bioinform..

[74]  Lee T. Sam,et al.  Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study , 2011, Science Translational Medicine.