Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high‐precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi‐conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N‐NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin‐scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.

[1]  S. Speich,et al.  Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes , 2011 .

[2]  J. Sarmiento,et al.  Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation , 2010 .

[3]  K. Speer,et al.  Southern Ocean Thermocline Ventilation , 2010 .

[4]  N. Urban,et al.  Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections , 2009 .

[5]  Taras Gerya,et al.  Introduction to Numerical Geodynamic Modelling , 2010 .

[6]  O. Ragueneau,et al.  A benthic Si mass balance on the Congo margin: Origin of the 4000 m DSi anomaly and implications for the transfer of Si from land to ocean , 2009 .

[7]  M. Brzezinski,et al.  Fractionation of silicon isotopes during biogenic silica dissolution , 2009 .

[8]  D. Sigman,et al.  The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen , 2009 .

[9]  M. J. Bergen,et al.  Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements , 2009 .

[10]  R. Ganeshram,et al.  Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean , 2009, Nature.

[11]  B. Peucker‐Ehrenbrink,et al.  Impact of the boundary processes on Si, Ca and Mg inputs to the ocean , 2009 .

[12]  B. Reynolds Modeling the modern marine δ30Si distribution , 2009 .

[13]  H. Drange,et al.  Observed sources and variability of Nordic seas overflow , 2009 .

[14]  M. Frank,et al.  The hafnium–neodymium isotopic composition of Atlantic seawater , 2009 .

[15]  Taro Takahashi,et al.  Oceanic sources, sinks, and transport of atmospheric CO2 , 2009 .

[16]  E. Tipper,et al.  Accuracy of stable Mg and Ca isotope data obtained by MC-ICP-MS using the standard addition method , 2008 .

[17]  D. Sigman,et al.  Nitrate isotopic composition between Bermuda and Puerto Rico: Implications for N2 fixation in the Atlantic Ocean , 2008 .

[18]  M. Brzezinski,et al.  Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific , 2008 .

[19]  M. Lozier,et al.  On the source of Gulf Stream nutrients , 2008 .

[20]  H. Hellmer,et al.  Evidence of deep- and bottom-water formation in the western Weddell Sea , 2008 .

[21]  L. Talley,et al.  Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation , 2008 .

[22]  John P. Dunne,et al.  A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor , 2007 .

[23]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[24]  K. Matsumoto,et al.  Radiocarbon-based circulation age of the world oceans , 2007 .

[25]  M. Brzezinski,et al.  Silicic acid leakage from the Southern Ocean: Opposing effects of nutrient uptake and oceanic circulation , 2007 .

[26]  Melanie J. Leng,et al.  An inter-laboratory comparison of Si isotope reference materials , 2007 .

[27]  A. Gnanadesikan,et al.  Deep ocean biogeochemistry of silicic acid and nitrate , 2007 .

[28]  R. B. Georg,et al.  New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS , 2006 .

[29]  D. Sigman,et al.  Nitrogen isotope constraints on subantarctic biogeochemistry , 2006 .

[30]  M. Brzezinski,et al.  Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate. , 2006, Analytical chemistry.

[31]  J. Toggweiler,et al.  The Southern Ocean biogeochemical divide , 2006, Nature.

[32]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[33]  J. Toggweiler,et al.  Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages , 2006 .

[34]  M. Frank,et al.  Silicon isotope fractionation during nutrient utilization in the North Pacific , 2006 .

[35]  Michael J. Follows,et al.  Nutrient streams and their induction into the mixed layer , 2006 .

[36]  R. B. Georg,et al.  Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS , 2006 .

[37]  T. Trull,et al.  Relevance of silicon isotopes to Si‐nutrient utilization and Si‐source assessment in Antarctic waters , 2005 .

[38]  M. Brzezinski,et al.  Biological fractionation of silicon isotopes in Southern Ocean surface waters , 2004 .

[39]  K. Speer,et al.  Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean , 2003 .

[40]  E. Maier‐Reimer,et al.  Control mechanisms for the oceanic distribution of silicon isotopes , 2003 .

[41]  D. M. Nelson,et al.  Ratios of Si, C and N uptake by microplankton in the Southern Ocean , 2003 .

[42]  M. Brzezinski,et al.  Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO2 , 2002 .

[43]  M. Brzezinski,et al.  A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean , 2002 .

[44]  D. M. Nelson,et al.  A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy , 2000 .

[45]  Carl Wunsch,et al.  Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data , 2000, Nature.

[46]  D. Sigman,et al.  The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior , 2000 .

[47]  M. Brzezinski,et al.  A first look at the distribution of the stable isotopes of silicon in natural waters , 2000 .

[48]  Reiner Schlitzer,et al.  Electronic atlas of WOCE hdrographic and tracer data now available , 2000 .

[49]  S. Østerhus,et al.  North Atlantic–Nordic Seas exchanges , 2000 .

[50]  J. Toggweiler Variation of atmospheric CO2 by ventilation of the ocean's deepest water , 1999 .

[51]  Matthew H. England,et al.  On the water masses and mean circulation of the South Atlantic Ocean , 1999 .

[52]  S. Rintoul,et al.  A late winter hydrographic section from Tasmania to Antarctica , 1999 .

[53]  J. Toggweiler,et al.  Constraints placed by silicon cycling on vertical exchange in general circulation models , 1999 .

[54]  A. Gnanadesikan,et al.  A simple predictive model for the structure of the oceanic pycnocline , 1999, Science.

[55]  V. Smetácek,et al.  Diatoms and the ocean carbon cycle. , 1999, Protist.

[56]  A. Gnanadesikan A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution , 1999 .

[57]  M. Brzezinski,et al.  Silicon-isotope composition of diatoms as an indicator of past oceanic change , 1998, Nature.

[58]  Shigenobu Takeda,et al.  Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters , 1998, Nature.

[59]  N. Gruber Anthropogenic CO2 in the Atlantic Ocean , 1998 .

[60]  M. Brzezinski,et al.  Fractionation of silicon isotopes by marine diatoms during biogenic silica formation , 1997 .

[61]  V. Garçon,et al.  On the intermediate and deep water flows in the South Atlantic Ocean , 1997 .

[62]  D. Marshall Subduction of water masses in an eddying ocean , 1997 .

[63]  C. Mauritzen Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme , 1996 .

[64]  W. Schmitz On the World Ocean Circulation. Volume 1. Some Global Features / North Atlantic Circulation. , 1996 .

[65]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[66]  W. Schmitz On the interbasin‐scale thermohaline circulation , 1995 .

[67]  F. Wilkerson,et al.  The role of a silicate pump in driving new production , 1995 .

[68]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[69]  F. Albarède Introduction to Geochemical Modeling , 1995 .

[70]  R. Dickson,et al.  The production of North Atlantic Deep Water: Sources, rates, and pathways , 1994 .

[71]  J. Toole,et al.  Estimates of Diapycnal Mixing in the Abyssal Ocean , 1994, Science.

[72]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[73]  Andrew J. Watson,et al.  Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment , 1993, Nature.

[74]  Klaus Hasselmann,et al.  Mean Circulation of the Hamburg LSG OGCM and Its Sensitivity to the Thermohaline Surface Forcing , 1993 .

[75]  A. Longhurst Role of the marine biosphere in the global carbon cycle , 1991 .

[76]  C. S. Weiler,et al.  What controls phytoplankton production in nutrient-rich areas of the open sea? , 1991 .

[77]  W. Broecker,et al.  Radiocarbon decay and oxygen utilization in the Deep Atlantic Ocean , 1991 .

[78]  M. Tsuchiya Circulation of the Antarctic Intermediate Water in the North Atlantic Ocean , 1989 .

[79]  J. Sarmiento,et al.  Nutrients in the Atlantic thermocline , 1985 .

[80]  G. Berger,et al.  Hydrography and silica budget of the Angola Basin , 1984 .

[81]  J. Reid,et al.  Abyssal characteristics of the World Ocean waters , 1983 .

[82]  L. Talley,et al.  The subpolar mode water of the North Atlantic , 1982 .

[83]  W. Broecker,et al.  Hydrography of the central Atlantic—I. The two-degree discontinuity☆ , 1976 .

[84]  E. Carmack,et al.  Frontal zone mixing and Antarctic Bottom water formation in the southern Weddell Sea , 1976 .

[85]  S. Levitus,et al.  World ocean atlas 2009 , 2010 .

[86]  O. Ragueneau,et al.  A benthic Si mass balance on the Congo margin: Origin of the 4000 m DSi anomaly and implications for the transfer of Si from land to ocean , 2009 .

[87]  Loth On the water masses and mean circulation of the South Atlantic Ocean , 2007 .

[88]  Sydney Levitus,et al.  World ocean atlas 2005. Vol. 4, Nutrients (phosphate, nitrate, silicate) , 2006 .

[89]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[90]  C. Mauritzen,et al.  On the origin of the warm inflow to the Nordic Seas , 2001 .

[91]  J. Holfort,et al.  The Meridional Oceanic Transports of Heat and Nutrients in the South Atlantic , 2001 .

[92]  S. Rintoul,et al.  The Southern Ocean Limb of the Global Deep Overturning Circulation , 2001 .

[93]  Gregory C. Johnson,et al.  Circulation, mixing, and production of Antarctic Bottom Water , 1999 .

[94]  J. Reid,et al.  On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports , 1997 .

[95]  L. Talley,et al.  Water-mass distributions in the western South Atlantic; a section from South Georgia Island (54S) northward across the equator , 1994 .

[96]  J. Toggweiler,et al.  New Radiocarbon Constraints on the Upwelling of Abyssal Water to the Ocean’s Surface , 1993 .

[97]  D. Karl,et al.  MAGIC : a sensitive and precise method for measuring dissolved phosphorus in aquatic environments , 1992 .

[98]  C. Wunsch,et al.  Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean , 1991 .

[99]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[100]  P. Brewer,et al.  Measurements of Total Carbon Dioxide and Alkalinity in the North Atlantic Ocean in 1981 , 1986 .

[101]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[102]  L. V. Worthington On the North Atlantic Circulation , 1977 .

[103]  T. Parsons,et al.  A practical handbook of seawater analysis , 1968 .

[104]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .

[105]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .