Shape Models of Lucy Targets (3548) Eurybates and (21900) Orus from Disk-integrated Photometry

We use our new light curves, along with historical data, to determine the rotation state, photometric properties, and convex shape models of the targets of the Lucy mission (3548) Eurybates and (21900) Orus. We determine a retrograde spin for both targets, with sidereal rotation periods of 8.7027283 ± 0.0000029 h and 13.486190 ± 0.000017 h, respectively. The phase curves of both objects are nearly linear in the phase-angle range observable from Earth and lack a pronounced opposition effect. Unsupervised classification of these phase curves by the Penttilä et al. tool suggests that Eurybates and Orus belong to the C and D taxonomic types, respectively, thereby independently confirming past classifications based on their spectral slope. Time-resolved color-index measurements show no systematic color variations correlated with rotation for either target at the 1% level, suggesting that no variegation is present on a hemispherical scale for any of the objects. Comparison of the shape models with stellar occultation data available for the two objects from the program by Buie et al. allows us to resolve the longitude ambiguity of the orientations of the spin axes and derive unique pole solutions for both targets. Furthermore, scaling the shape models to match the occultation chords produces accurate sizes and geometric albedos for both objects. The derived surface-equivalent spherical diameters are D s = 69.3 ± 1.4 km and D s = 60.5 ± 0.9 km for Eurybates and Orus, respectively, while the geometric albedo in the H, G 1, G 2 system is p V (H, G 1, G 2) = 0.044 ± 0.003 and p V (H, G 1, G 2) = 0.040 ± 0.002 for Eurybates and Orus, respectively.

[1]  K. Muinonen,et al.  Asteroid absolute magnitudes and phase curve parameters from Gaia photometry , 2021, Astronomy & Astrophysics.

[2]  B. Buratti,et al.  Corrigendum to “Asteroid Photometry” [Asteroids IV (2015) (P. Michel et al., eds.), pp. 129–150] , 2020 .

[3]  A. Pál,et al.  Solar System Objects Observed with TESS—First Data Release: Bright Main-belt and Trojan Asteroids from the Southern Survey , 2020, The Astrophysical Journal Supplement Series.

[4]  N. Pinilla-Alonso,et al.  Analysis in the visible range of NASA Lucy mission targets: Eurybates, Polymele, Orus and Donaldjohanson. , 2019, Icarus.

[5]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[6]  P. Bartczak,et al.  Volume uncertainty assessment method of asteroid models from disc-integrated visual photometry , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[8]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[9]  S. Mottola,et al.  Light Curves of Lucy Targets: Leucus and Polymele , 2018 .

[10]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[11]  P. Bartczak,et al.  Shaping asteroid models using genetic evolution (SAGE) , 2018, 1904.08940.

[12]  M. Kaasalainen,et al.  Adaptive optics and lightcurve data of asteroids: twenty shape models and information content analysis , 2017, 1708.05191.

[13]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[14]  A. Milani,et al.  On the ages of resonant, eroded and fossil asteroid families , 2016, 1607.01998.

[15]  K. Muinonen,et al.  H, G1, G2 photometric phase function extended to low-accuracy data , 2016 .

[16]  K. Muinonen,et al.  Asteroid observations at low phase angles. IV: Average parameters for the new H, G1, G2 magnitude system , 2016 .

[17]  K. Muinonen,et al.  Asteroid lightcurve inversion with Lommel-Seeliger ellipsoids , 2015 .

[18]  M. Kaasalainen,et al.  ADAM: a general method for using various data types in asteroid reconstruction , 2015, 1501.05958.

[19]  C. Russell,et al.  Resolved photometry of Vesta reveals physical properties of crater regolith , 2013, 1702.00207.

[20]  M. Kaasalainen,et al.  Optimal computation of brightness integrals parametrized on the unit sphere , 2012, 1201.2822.

[21]  Munetaka Ueno,et al.  Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey , 2011 .

[22]  Miroslav Brovz,et al.  Eurybates — the only asteroid family among Trojans? , 2011, 1109.1109.

[23]  A. Erikson,et al.  ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS , 2011 .

[24]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[25]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[26]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[27]  M. Caramia,et al.  Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms , 2008 .

[28]  Dale P. Cruikshank,et al.  NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.

[29]  R. Gil-Hutton,et al.  Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.

[30]  F. De Luise,et al.  Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical families , 2007, 0704.0350.

[31]  Mikko Kaasalainen,et al.  Inverse problems of generalized projection operators , 2006 .

[32]  M. Kaasalainen,et al.  Photometric signatures of highly nonconvex and binary asteroids , 2003 .

[33]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[34]  Karri Muinonen,et al.  Optimization Methods for Asteroid Lightcurve Inversion. II. The Complete Inverse Problem , 2001 .

[35]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[36]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[37]  A. Harris,et al.  Lightcurves and phase relations of the asteroids 82 alkmene and 444 Gyptis , 1984 .

[38]  Y. Krugly,et al.  Opposition effect of Trojan asteroids , 2012 .