A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods

We develop computable a posteriori error estimates for the pointwise evaluation of linear functionals of a solution to a parameterized linear system of equations. These error estimates are based on a variational analysis applied to polynomial spectral methods for forward and adjoint problems. We also use this error estimate to define an improved linear functional and we prove that this improved functional converges at a much faster rate than the original linear functional given a pointwise convergence assumption on the forward and adjoint solutions. The advantage of this method is that we are able to use low order spectral representations for the forward and adjoint systems to cheaply produce linear functionals with the accuracy of a higher order spectral representation. The method presented in this paper also applies to the case where only the convergence of the spectral approximation to the adjoint solution is guaranteed. We present numerical examples showing that the error in this improved functional is often orders of magnitude smaller. We also demonstrate that in higher dimensions, the computational cost required to achieve a given accuracy is much lower using the improved linear functional.

[1]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[2]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[3]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[4]  Simon Tavener,et al.  A Posteriori Analysis and Adaptive Error Control for Multiscale Operator Decomposition Solution of Elliptic Systems I: Triangular Systems , 2008, SIAM J. Numer. Anal..

[5]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[6]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[7]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[8]  T. Constantinescu Orthogonal polynomials in several variables. I , 2002 .

[9]  Luca Dieci,et al.  Lyapunov Exponents of Systems Evolving on Quadratic Groups , 2003, SIAM J. Matrix Anal. Appl..

[10]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[11]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[12]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[13]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[14]  Zhaojun Bai,et al.  The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..

[15]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[16]  Clint Dawson,et al.  A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions , 2011, SIAM J. Sci. Comput..

[17]  Tim Wildey,et al.  A Posteriori Analysis and Improved Accuracy for an Operator Decomposition Solution of a Conjugate Heat Transfer Problem , 2008, SIAM J. Numer. Anal..

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  Donald J. Estep,et al.  Fast and reliable methods for determining the evolution of uncertain parameters in differential equations , 2006, J. Comput. Phys..

[20]  Troy D. Butler,et al.  A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis , 2012, SIAM J. Numer. Anal..

[21]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[22]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[23]  David F. Gleich,et al.  Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..

[24]  Olivier Le Maitre,et al.  Dual-based error analysis for uncertainty quantification in a chemical system , 2007 .

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  John N. Shadid,et al.  An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..

[27]  Claude Brezinski,et al.  The PageRank Vector: Properties, Computation, Approximation, and Acceleration , 2006, SIAM J. Matrix Anal. Appl..

[28]  Mary F. Wheeler,et al.  Stochastic collocation and mixed finite elements for flow in porous media , 2008 .

[29]  J. Breidt,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..

[30]  G. Karniadakis,et al.  Solving elliptic problems with non-Gaussian spatially-dependent random coefficients , 2009 .

[31]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[32]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[33]  Tim Wildey,et al.  A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid – solid heat transfer , 2010 .

[34]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[35]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[36]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[37]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[38]  Donald Estep,et al.  Fast methods for determining the evolution of uncertain parameters in reaction-diffusion equations , 2007 .

[39]  Nicholas Zabaras,et al.  A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .

[40]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[41]  Baskar Ganapathysubramanian,et al.  Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..

[42]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .