A Posteriori Error Analysis of Parameterized Linear Systems Using Spectral Methods
暂无分享,去创建一个
[1] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[2] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[3] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[4] Simon Tavener,et al. A Posteriori Analysis and Adaptive Error Control for Multiscale Operator Decomposition Solution of Elliptic Systems I: Triangular Systems , 2008, SIAM J. Numer. Anal..
[5] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[6] Claes Johnson,et al. Computational Differential Equations , 1996 .
[7] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[8] T. Constantinescu. Orthogonal polynomials in several variables. I , 2002 .
[9] Luca Dieci,et al. Lyapunov Exponents of Systems Evolving on Quadratic Groups , 2003, SIAM J. Matrix Anal. Appl..
[10] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[11] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[12] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[13] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[14] Zhaojun Bai,et al. The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..
[15] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[16] Clint Dawson,et al. A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions , 2011, SIAM J. Sci. Comput..
[17] Tim Wildey,et al. A Posteriori Analysis and Improved Accuracy for an Operator Decomposition Solution of a Conjugate Heat Transfer Problem , 2008, SIAM J. Numer. Anal..
[18] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[19] Donald J. Estep,et al. Fast and reliable methods for determining the evolution of uncertain parameters in differential equations , 2006, J. Comput. Phys..
[20] Troy D. Butler,et al. A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis , 2012, SIAM J. Numer. Anal..
[21] David F. Gleich,et al. Random Alpha PageRank , 2009, Internet Math..
[22] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[23] David F. Gleich,et al. Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..
[24] Olivier Le Maitre,et al. Dual-based error analysis for uncertainty quantification in a chemical system , 2007 .
[25] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[26] John N. Shadid,et al. An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..
[27] Claude Brezinski,et al. The PageRank Vector: Properties, Computation, Approximation, and Acceleration , 2006, SIAM J. Matrix Anal. Appl..
[28] Mary F. Wheeler,et al. Stochastic collocation and mixed finite elements for flow in porous media , 2008 .
[29] J. Breidt,et al. A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..
[30] G. Karniadakis,et al. Solving elliptic problems with non-Gaussian spatially-dependent random coefficients , 2009 .
[31] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[32] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[33] Tim Wildey,et al. A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid – solid heat transfer , 2010 .
[34] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .
[35] John Red-Horse,et al. Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .
[36] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[37] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[38] Donald Estep,et al. Fast methods for determining the evolution of uncertain parameters in reaction-diffusion equations , 2007 .
[39] Nicholas Zabaras,et al. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes , 2007 .
[40] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[41] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[42] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .