A complete domain-to-species taxonomy for Bacteria and Archaea

[1]  K. Nealson,et al.  A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index , 2020, mBio.

[2]  V. Denef,et al.  To Dereplicate or Not To Dereplicate? , 2019, mSphere.

[3]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[4]  J. Banfield,et al.  Consistent metagenome-derived metrics verify and define bacterial species boundaries , 2019, bioRxiv.

[5]  Francesco Asnicar,et al.  Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea , 2019, Nature Communications.

[6]  K. Carroll,et al.  Practical problems when incorporating rapidly changing microbial taxonomy into clinical practice , 2019, Clinical chemistry and laboratory medicine.

[7]  Edoardo Pasolli,et al.  Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle , 2019, Cell.

[8]  Donovan H. Parks,et al.  The importance of designating type material for uncultured taxa. , 2019, Systematic and applied microbiology.

[9]  I-Min A. Chen,et al.  IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes , 2018, Nucleic Acids Res..

[10]  Christian Ebeling,et al.  BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis , 2018, Nucleic Acids Res..

[11]  George M Garrity,et al.  International Code of Nomenclature of Prokaryotes. , 2015, International journal of systematic and evolutionary microbiology.

[12]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2017, Nature Communications.

[13]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[14]  K. Nealson,et al.  A genus definition for Bacteria and Archaea based on genome relatedness and taxonomic affiliation , 2018, bioRxiv.

[15]  James R. Cole,et al.  The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level , 2018, Nucleic Acids Res..

[16]  Michael DiCuccio,et al.  Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI , 2018, International journal of systematic and evolutionary microbiology.

[17]  A. Parte LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. , 2018, International journal of systematic and evolutionary microbiology.

[18]  Henrik Christensen,et al.  Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. , 2018, International journal of systematic and evolutionary microbiology.

[19]  M. Hazbón,et al.  Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. , 2018, International journal of systematic and evolutionary microbiology.

[20]  Donovan H. Parks,et al.  Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life , 2017, Nature Microbiology.

[21]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[22]  R. Amann,et al.  Uncultivated microbes in need of their own taxonomy , 2017, The ISME Journal.

[23]  Natalia N. Ivanova,et al.  1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life , 2017, Nature Biotechnology.

[24]  J. Chun,et al.  A large-scale evaluation of algorithms to calculate average nucleotide identity , 2017, Antonie van Leeuwenhoek.

[25]  H. Ochman,et al.  Biological Species Are Universal across Life’s Domains , 2017, Genome biology and evolution.

[26]  G. Garrity A New Genomics-Driven Taxonomy of Bacteria and Archaea: Are We There Yet? , 2016, Journal of Clinical Microbiology.

[27]  W. Whitman Modest proposals to expand the type material for naming of prokaryotes. , 2016, International journal of systematic and evolutionary microbiology.

[28]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[29]  Heike Sichtig,et al.  Meeting report: GenBank microbial genomic taxonomy workshop (12–13 May, 2015) , 2016, Standards in Genomic Sciences.

[30]  Deanna M. Church,et al.  Assembly: a resource for assembled genomes at NCBI , 2015, Nucleic Acids Res..

[31]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[32]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[33]  A. Oren Reclassification of Halomonas caseinilytica Wu et al. 2008 as a later synonym of Halomonas sinaiensis—Comments on the proposal by Hwang et al., Antonie van Leeuwenhoek 109:1345–1352, 2016 , 2016, Antonie van Leeuwenhoek.

[34]  R. Beiko Microbial malaise: how can we classify the microbiome? , 2015, Trends in microbiology.

[35]  Natalia N. Ivanova,et al.  Microbial species delineation using whole genome sequences , 2015, Nucleic acids research.

[36]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[37]  William B Whitman,et al.  Genome sequences as the type material for taxonomic descriptions of prokaryotes. , 2015, Systematic and applied microbiology.

[38]  H. Christensen,et al.  International Committee on Systematics of Prokaryotes , 2015 .

[39]  Scott Federhen,et al.  Type material in the NCBI Taxonomy Database , 2014, Nucleic Acids Res..

[40]  Bas E. Dutilh,et al.  Microbial taxonomy in the post-genomic era: Rebuilding from scratch? , 2014, Archives of Microbiology.

[41]  Rick Stevens,et al.  Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains , 2014, PLoS biology.

[42]  Bernard De Baets,et al.  StrainInfo introduces electronic passports for microorganisms. , 2014, Systematic and applied microbiology.

[43]  Radhey S. Gupta,et al.  Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. , 2013, International journal of systematic and evolutionary microbiology.

[44]  W. Hanage Fuzzy species revisited , 2013, BMC Biology.

[45]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[46]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[47]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[48]  T. Ficht Brucella taxonomy and evolution. , 2010, Future microbiology.

[49]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[50]  E. Velázquez,et al.  Historical evolution and current status of the taxonomy of genus Pseudomonas. , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[51]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[52]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[53]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[54]  P. Vandamme,et al.  DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. , 2007, International journal of systematic and evolutionary microbiology.

[55]  K. Konstantinidis,et al.  The bacterial species definition in the genomic era , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  I. Moriyón,et al.  International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Brucella: Minutes of the meeting, 17 September 2003, Pamplona, Spain , 2006 .

[57]  Konstantinos T. Konstantinidis,et al.  Towards a Genome-Based Taxonomy for Prokaryotes , 2005, Journal of bacteriology.

[58]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Ruiting Lan,et al.  Escherichia coli in disguise: molecular origins of Shigella. , 2002, Microbes and infection.

[60]  F. Cohan What are bacterial species? , 2002, Annual review of microbiology.

[61]  F. Grimont,et al.  Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization , 1985 .