A review of environmental and anthropogenic variables used to model jaguar occurrence

Jaguars (Panthera onca) are a landscape species of conservation importance and our understanding of environmental and anthropogenic drivers of jaguar occurrence is necessary to improve conservation strategies. We reviewed available literature to simply describe environmental and anthropogenic variables used and found to be significant in occurrence modeling. We reviewed 95 documents published from 1980 to 2021 that focused on jaguar occurrence and that used 39 variable types (21 anthropogenic, 18 environmental) among different techniques, scales, and approaches. In general, these variables included both anthropogenic (roads, land use, human activities, and population) and environmental (climate, vegetation, ecological interactions, topographic, water, and others) factors. Twelve variables were identified as affecting jaguar occurrence overall, eleven at local scale and seven at broad scales (regional and continental). Focusing more specifically on the variables that correlate with occurrence should help researchers to make better predictions in areas without quantitative jaguar data.

[1]  Kevin L. Seymour Panthera onca , 2022, CABI Compendium.

[2]  Luke Gibson,et al.  Impacts of hydropower on the habitat of jaguars and tigers , 2021, Communications biology.

[3]  Jochen A. G. Jaeger,et al.  Direct and indirect effects of roads on space use by jaguars in Brazil , 2021, Scientific Reports.

[4]  M. Tobler,et al.  Environmental and anthropogenic factors synergistically affect space use of jaguars , 2021, Current Biology.

[5]  H. Quigley,et al.  Anthropogenic factors disproportionately affect the occurrence and potential population connectivity of the Neotropic’s apex predator: The jaguar at the southwestern extent of its distribution , 2020 .

[6]  C. Nielsen,et al.  Determinants of jaguar occupancy at the northern range edge , 2020, Mammal Research.

[7]  S. Pérez-Elizalde,et al.  Coexistence of jaguars (Panthera onca) and pumas (Puma concolor) in a tropical forest in south–eastern Mexico , 2020 .

[8]  Otters , 2019, Not a Thing to Comfort You.

[9]  R. Morato,et al.  Priority areas for jaguar Panthera onca conservation in the Cerrado , 2019, Oryx.

[10]  S. Pérez-Elizalde,et al.  Habitat use of jaguar (Panthera onca) in a tropical forest in northern Quintana Roo, Mexico , 2019, Revista Mexicana de Biodiversidad.

[11]  G. Wittemyer,et al.  Resource selection in an apex predator and variation in response to local landscape characteristics , 2018, Biological Conservation.

[12]  A. Noss,et al.  Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco , 2018, Diversity and Distributions.

[13]  A. Hastings,et al.  Habitat suitability estimated by niche models is largely unrelated to species abundance , 2018, Global Ecology and Biogeography.

[14]  M. Betts,et al.  Multi-criteria spatial identification of carnivore conservation areas under data scarcity and conflict: a jaguar case study in Sierra Nevada de Santa Marta, Colombia , 2018, Biodiversity and Conservation.

[15]  C. Neale,et al.  Influence of behavioral state, sex, and season on resource selection by jaguars (Panthera onca ): Always on the prowl? , 2018, Ecosphere.

[16]  Nathaniel P. Robinson,et al.  Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the jaguar (Panthera onca) , 2018, PloS one.

[17]  A. Paviolo,et al.  Effectiveness of Protected Areas for biodiversity conservation: Mammal occupancy patterns in the Iguaçu National Park, Brazil , 2018 .

[18]  S. Espinosa,et al.  When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation , 2018, PloS one.

[19]  Júlio César de Souza,et al.  Habitat use, ranching, and human-wildlife conflict within a fragmented landscape in the Pantanal, Brazil , 2018 .

[20]  Timothy O. Randhir,et al.  OF OTTER DISTRIBUTION MODELING : APPROACH , SCALE , AND METRICS , 2018 .

[21]  L. Silveira,et al.  Forced neighbours: Coexistence between jaguars and pumas in a harsh environment , 2017 .

[22]  K. DeMatteo,et al.  Using niche-modelling and species-specific cost analyses to determine a multispecies corridor in a fragmented landscape , 2017, PloS one.

[23]  J. Thompson,et al.  Modeling the effects of deforestation on the connectivity of jaguar Panthera onca populations at the southern extent of the species’ range , 2017 .

[24]  Robert P. Anderson,et al.  Opening the black box: an open-source release of Maxent , 2017 .

[25]  C. Navarro,et al.  Small Protected Areas as Stepping-Stones for Jaguars in Western Mexico , 2017 .

[26]  J. Núñez,et al.  Spatial requirements of jaguars and pumas in Southern Mexico , 2017 .

[27]  J. Thompson,et al.  Space use and movement of jaguar (Panthera onca) in western Paraguay , 2017, bioRxiv.

[28]  H. Robinson,et al.  Predicting carnivore distribution and extirpation rate based on human impacts and productivity factors; assessment of the state of jaguar (Panthera onca) in Venezuela , 2017 .

[29]  C. López-González,et al.  Jaguar interactions with pumas and prey at the northern edge of jaguars’ range , 2017, PeerJ.

[30]  G. Cuyckens,et al.  Living on the edge: regional distribution and retracting range of the jaguar (Panthera onca) , 2017 .

[31]  F. Palomares,et al.  Spatial ecology of jaguars, pumas, and ocelots: a review of the state of knowledge , 2017 .

[32]  L. Silveira,et al.  Living in extreme environments: modeling habitat suitability for jaguars, pumas, and their prey in a semiarid habitat , 2016, Journal of Mammalogy.

[33]  Peter Leimgruber,et al.  Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar , 2016, PloS one.

[34]  Daniel H. Thornton,et al.  Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars , 2016 .

[35]  O. Pays,et al.  How competition and predation shape patterns of waterhole use by herbivores in arid ecosystems , 2016, Animal Behaviour.

[36]  Daniel H. Thornton,et al.  Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). , 2016, Ecological applications : a publication of the Ecological Society of America.

[37]  K. McGarigal,et al.  Multi-scale habitat selection modeling: a review and outlook , 2016, Landscape Ecology.

[38]  Gerald R. Urquhart,et al.  Terrestrial Mammal Occupancy in the Context of Widespread Forest Loss and a Proposed Interoceanic Canal in Nicaragua's Decreasingly Remote South Caribbean Region , 2016, PloS one.

[39]  Chris J. Johnson,et al.  REVIEW: Can habitat selection predict abundance? , 2016, The Journal of animal ecology.

[40]  W. Ripple,et al.  Trophic cascades from wolves to alders in Yellowstone , 2015 .

[41]  R. Morato,et al.  Modeling the risk of livestock depredation by jaguar along the Transamazon highway, Brazil , 2015 .

[42]  Jason Noble,et al.  A spatially explicit agent-based model of the interactions between jaguar populations and their habitats , 2015 .

[43]  J. F. Martínez-Montoya,et al.  Connectivity among jaguar populations in the Sierra Madre Oriental, México , 2015 .

[44]  D. Norris,et al.  Ecological Relationships of Meso-Scale Distribution in 25 Neotropical Vertebrate Species , 2015, PloS one.

[45]  J. Cordovez,et al.  Sex dependent spatially explicit stochastic dispersal modeling as a framework for the study of jaguar conservation and management in South America , 2015 .

[46]  S. Arroyo-Arce,et al.  Jaguars (Panthera onca) increase kill utilization rates and share prey in response to seasonal fluctuations in nesting green turtle (Chelonia mydas mydas) abundance in Tortuguero National Park, Costa Rica , 2015 .

[47]  S. Arroyo-Arce,et al.  Habitat features influencing jaguar Panthera onca (Carnivora: Felidae) occupancy in Tortuguero National Park, Costa Rica. , 2014, Revista de biologia tropical.

[48]  L. Silveira,et al.  The potential for large-scale wildlife corridors between protected areas in Brazil using the jaguar as a model species , 2014, Landscape Ecology.

[49]  R. D. de Paula,et al.  Identification of Priority Conservation Areas and Potential Corridors for Jaguars in the Caatinga Biome, Brazil , 2014, PloS one.

[50]  L. Silveira,et al.  Jaguar Panthera onca Habitat Modeling in Landscapes Facing High Land‐use Transformation Pressure—Findings from Mato Grosso, Brazil , 2014 .

[51]  Stephan Getzin,et al.  Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest , 2013 .

[52]  O. Monroy-Vilchis,et al.  Distribución potencial del jaguar Panthera onca (Carnivora: Felidae) en Guerrero, México: persistencia de zonas para su conservación , 2012 .

[53]  L. Silveira,et al.  Can species distribution modelling provide estimates of population densities? A case study with jaguars in the Neotropics , 2012 .

[54]  L. Silveira,et al.  Using occupancy models to investigate space partitioning between two sympatric large predators, the jaguar and puma in central Brazil , 2012 .

[55]  K. Ferraz,et al.  Species Distribution Modeling for Conservation Purposes , 2012 .

[56]  E. K. Pikitch,et al.  Trophic Downgrading of Planet Earth , 2011, Science.

[57]  C. Patrick Doncaster,et al.  Jaguar and puma activity patterns in relation to their main prey , 2011 .

[58]  D. Conde,et al.  Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest , 2011 .

[59]  L. Maiorano,et al.  Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation , 2011 .

[60]  L. Chisholm,et al.  An evaluation of environmental factors affecting species distributions , 2011 .

[61]  M. Kelly,et al.  Carnivore co‐existence and habitat use in the Mountain Pine Ridge Forest Reserve, Belize , 2011 .

[62]  Joel C. Sáenz,et al.  Modelo de habitat potencial para el jaguar, Panthera onca (Carnívora: Felidae), en la península de Osa Costa Rica , 2011 .

[63]  Norman L. Christensen,et al.  Sex matters: Modeling male and female habitat differences for jaguar conservation , 2010 .

[64]  A. Paviolo,et al.  Niche partitioning and species coexistence in a Neotropical felid assemblage. , 2010 .

[65]  Katherine A. Zeller,et al.  A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca , 2010 .

[66]  Daniel Fortin,et al.  Considering ecological dynamics in resource selection functions. , 2010, The Journal of animal ecology.

[67]  A. Rabinowitz,et al.  Ecology and behaviour of the Jaguar (Panthers onca) in Belize, Central America , 2009 .

[68]  J. Diniz‐Filho,et al.  Spatial analysis improves species distribution modelling during range expansion , 2008, Biology Letters.

[69]  D. Murray,et al.  Spatial organization and food habits of jaguars (Panthera onca) in a floodplain forest , 2007 .

[70]  W. Giuliano,et al.  Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space , 2006 .

[71]  Jorge Soberón,et al.  Global Mammal Conservation: What Must We Manage? , 2005, Science.

[72]  E. Boydston,et al.  Sexual differentiation in the distribution potential of northern jaguars (Panthera onca) , 2005 .

[73]  Darryl I. MacKenzie,et al.  Occupancy as a surrogate for abundance estimation , 2004 .

[74]  M. Sunquist,et al.  Wild Cats of the World , 2002 .

[75]  Kent H. Redford,et al.  Planning to Save a Species: the Jaguar as a Model , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[76]  T. Fuller,et al.  Carnivore demography and the consequences of changes in prey availability , 2001 .

[77]  G. Schaller,et al.  Movement Patterns of Jaguar , 1980 .