Hyper hamiltonian laceability on edge fault star graph

The star graph possess many nice topological properties. Edge fault tolerance is an important issue for a network since the edges in the network may fail sometimes. In this paper, we show that the n-dimensional star graph is (n - 3)-edge fault tolerant hamiltonian laceable, (n - 3)-edge fault tolerant strongly hamiltonian laceable, and (n - 4)- edge fault tolerant hyper hamiltonian laceable. All these results are optimal in a sense described in this paper.

[1]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[4]  Selim G. Akl,et al.  Optimal Communication algorithms on Star Graphs Using Spanning Tree Constructions , 1995, J. Parallel Distributed Comput..

[5]  Gen-Huey Chen,et al.  Hamiltonian-laceability of star graphs , 1997, Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'97).

[6]  S. Lakshmivarahan,et al.  Embedding of cycles and Grids in Star Graphs , 1991, J. Circuits Syst. Comput..

[7]  M. Lewinter,et al.  Hyper-Hamilton Laceable and Caterpillar-Spannable Product Graphs , 1997 .

[8]  Dilip Sarkar,et al.  Optimal Broadcasting on the Star Graph , 1992, IEEE Trans. Parallel Distributed Syst..

[9]  Gen-Huey Chen,et al.  Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..

[10]  Khaled Day,et al.  A Comparative Study of Topological Properties of Hypercubes and Star Graphs , 1994, IEEE Trans. Parallel Distributed Syst..

[11]  Arun K. Somani,et al.  An Efficient Sorting Algorithm for the Star Graph Interconnection Network , 1990, ICPP.

[12]  Selim G. Akl,et al.  On Some Properties and Algorithms for the Star and Pancake Interconnection Networks , 1994, J. Parallel Distributed Comput..

[13]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[14]  Stephen A. Wong Hamilton cycles and paths in butterfly graphs , 1995, Networks.

[15]  Selim G. Akl,et al.  A Parallel Algorithm for Computing Fourier Transforms on the Star Graph , 1994, IEEE Trans. Parallel Distributed Syst..

[16]  Zevi Miller,et al.  Near Embeddings of Hypercubes into Cayley Graphs on the Symmetric Group , 1994, IEEE Trans. Computers.

[17]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[18]  Ivan Stojmenovic,et al.  Data communication and computational geometry on the star and pancake interconnection networks , 1991, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing.

[19]  Afonso Ferreira,et al.  Optimal information dissemination in Star and Pancake networks , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.

[20]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[21]  Nader Bagherzadeh,et al.  Embedding an Arbitrary Binary Tree into the Star Graph , 1996, IEEE Trans. Computers.

[22]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .