Optimal parameter settings for information processing in gene regulatory networks

Gene networks can often be interpreted as computational circuits. This article investigates the computational properties of gene regulatory networks defined in terms of the speed and the accuracy of the output of a gene network. It will be shown that there is no single optimal set of parameters, but instead, there is a trade-off between speed and accuracy. Using the trade-off it will also be shown how systems with various parameters can be ranked with respect to their computational efficiency. Numerical analysis suggests that the trade-off can be improved when the output gene is repressing itself, even though the accuracy or the speed of the auto-regulated system may be worse than the unregulated system.

[1]  Hava T. Siegelmann,et al.  Computation in Gene Networks , 2001, MCU.

[2]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[3]  Marta Z. Kwiatkowska,et al.  PRISM: Probabilistic Symbolic Model Checker , 2002, Computer Performance Evaluation / TOOLS.

[4]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[5]  J. Mattick,et al.  The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. , 2001, Molecular biology and evolution.

[6]  Laurie J. Heyer,et al.  Engineering bacteria to solve the Burnt Pancake Problem , 2008, Journal of biological engineering.

[7]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[8]  Atul Narang,et al.  Comparative analysis of some models of gene regulation in mixed-substrate microbial growth. , 2006, Journal of theoretical biology.

[9]  Dominique Chu,et al.  A theoretical interpretation of the transient sialic acid toxicity of a nanR mutant of Escherichia coli. , 2008, Journal of molecular biology.

[10]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Nicolae Radu Zabet,et al.  Design Principles of Transcriptional Logic Circuits , 2010, ALIFE.

[12]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[13]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[14]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[15]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[16]  J. Hespanha,et al.  Optimal feedback strength for noise suppression in autoregulatory gene networks. , 2009, Biophysical journal.

[17]  Nicolae Radu Zabet,et al.  Computational limits to binary genes , 2010, Journal of The Royal Society Interface.

[18]  Jack Xin,et al.  A Critical Quantity for Noise Attenuation in Feedback Systems , 2010, PLoS Comput. Biol..

[19]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[20]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[21]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[22]  Chrisantha Fernando,et al.  Molecular circuits for associative learning in single-celled organisms , 2008, Journal of The Royal Society Interface.

[23]  Hava T. Siegelmann,et al.  Computation in gene networks , 2004 .

[24]  Atul Narang,et al.  Bacterial gene regulation in diauxic and non-diauxic growth. , 2006, Journal of theoretical biology.

[25]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[26]  I. Nemenman,et al.  Optimal Signal Processing in Small Stochastic Biochemical Networks , 2006, PloS one.

[27]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[28]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[29]  Nils Blüthgen,et al.  Noise Management by Molecular Networks , 2009, PLoS Comput. Biol..

[30]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.