Digital and Analog Design of Fractional PD Controller for a Servo System

Paper presents two implementations of a fractional-order proportional-derivative (PD) controller for a position servo system. The first one is an analog one with the offered attractive benefit of using only one second-generation current conveyor (CCII) as an active element, minimizing the active component count compared to the conventional way of implementation where it requires three CCIIs for this purpose. The behavior of the controller is evaluated using the Cadence software and MOS transistor models. The second approach uses a digital implementation of Oustaloup filter in a time domain version.

[1]  Waldemar Bauer,et al.  Implementation of Low-Pass Fractional Filtering for the Purpose of Analysis of Electroencephalographic Signals , 2017, RRNR.

[2]  Juraj Valsa,et al.  Analogue Realization of Fractional-Order Dynamical Systems , 2013, Entropy.

[3]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[4]  Abdullah Ates,et al.  Implementation of fractional order filters discretized by modified Fractional Order Darwinian Particle Swarm Optimization , 2017 .

[5]  Waldemar Bauer,et al.  Fractional Differential Equation Solvers in Octave/Matlab , 2018, 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR).

[6]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[7]  Eduard Petlenkov,et al.  Tuning and digital implementation of a fractional-order PD controller for a position servo , 2013 .

[8]  E. Girejko,et al.  On the Fractional Variable Order Cucker–Smale Type Model , 2018 .

[9]  Dorota Mozyrska,et al.  Stability of Linear Systems with Caputo Fractional-, Variable-Order Difference Operator of Convolution Type , 2018, 2018 41st International Conference on Telecommunications and Signal Processing (TSP).

[10]  Ahmed S. Elwakil,et al.  Single active element implementation of fractional-order differentiators and integrators , 2018, AEU - International Journal of Electronics and Communications.

[11]  Eduard Petlenkov,et al.  Efficient analog implementations of fractional-order controllers , 2013, Proceedings of the 14th International Carpathian Control Conference (ICCC).

[12]  Jerzy Baranowski,et al.  Time-domain Oustaloup approximation , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[13]  Krzysztof J. Latawiec,et al.  New Stability Tests for Discretized Fractional-Order Systems Using the Al-Alaoui and Tustin Operators , 2018, Complex..

[14]  Costas Psychalinos,et al.  New analog implementation technique for fractional-order controller: A DC motor control , 2017 .

[16]  Radu-Emil Precup,et al.  An overview on fault diagnosis and nature-inspired optimal control of industrial process applications , 2015, Comput. Ind..

[17]  Jerzy Baranowski,et al.  Adaptive Non-Integer Controller for Water Tank System , 2015, RRNR.

[18]  Prasanta Sarkar,et al.  Direct Discretization Method for Realizing a Class of Fractional Order System in Delta Domain – a Unified Approach , 2019, Automatic Control and Computer Sciences.

[19]  Jan Jerabek,et al.  Practical Design of RC Approximants of Constant Phase Elements and Their Implementation in Fractional-Order PID Regulators Using CMOS Voltage Differencing Current Conveyors , 2018, Circuits Syst. Signal Process..

[20]  Costas Psychalinos,et al.  Design of a Generalized Fractional-Order PID Controller Using Operational Amplifiers , 2018, 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[21]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[22]  Jerzy Baranowski,et al.  On Digital Realizations of Non-integer Order Filters , 2016, Circuits Syst. Signal Process..

[23]  K. Latawiec,et al.  Model order reduction of commensurate linear discrete-time fractional-order systems , 2018 .

[24]  Maneesha Gupta,et al.  Performance evaluation of different order fractional Chebyshev filter using optimisation techniques , 2020, International Journal of Electronics Letters.

[25]  Jerzy Baranowski,et al.  Stability Properties of Discrete Time-Domain Oustaloup Approximation , 2015, RRNR.

[26]  Abdelkader Mezouar,et al.  Fractional-Order Sliding Mode Control for D-STATCOM Connected Wind Farm Based DFIG Under Voltage Unbalanced , 2018, Arabian Journal for Science and Engineering.

[27]  A. Charef,et al.  Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/ controller , 2006 .

[28]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[29]  Mehmet Önder Efe,et al.  Fractional Order Systems in Industrial Automation—A Survey , 2011, IEEE Transactions on Industrial Informatics.

[30]  Yanju Ji,et al.  3D numerical modeling of induced-polarization electromagnetic response based on the finite-difference time-domain method , 2018, GEOPHYSICS.

[31]  Radek Martinek,et al.  Implementation of Non-Integer Order Filtering for the Purpose of Disparities Detection in Beta Frequencies - A Pilot Study , 2018, 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR).

[32]  Juraj Valsa,et al.  Conceptual design of a selectable fractional-order differentiator for industrial applications , 2014 .

[33]  Piotr Ostalczyk,et al.  Stability conditions for fractional-order linear equations with delays , 2018 .

[34]  E. Tlelo-Cuautle,et al.  New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators , 2017 .

[35]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[36]  Georgia Tsirimokou,et al.  A systematic procedure for deriving RC networks of fractional-order elements emulators using MATLAB , 2017 .

[37]  Marek Rydel,et al.  New integer-order approximations of discrete-time non-commensurate fractional-order systems using the cross Gramian , 2018, Adv. Comput. Math..

[38]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[39]  R. Rusu-Both,et al.  Fractional order model reference boiler control for a isotope separation column , 2016, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR).

[40]  Costas Psychalinos,et al.  CCII Based Realization of Fractional-Order PD Controller for a Position Servo , 2019, 2019 42nd International Conference on Telecommunications and Signal Processing (TSP).