A New Discontinuous Finite Volume Method for Elliptic Problems
暂无分享,去创建一个
[1] B. Rivière,et al. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .
[2] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[3] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[4] J. Aubin,et al. Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires , 1970 .
[5] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[6] I. Babuska,et al. Nonconforming Elements in the Finite Element Method with Penalty , 1973 .
[7] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[8] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[9] Bernardo Cockburn,et al. Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.
[10] Panayot S. Vassilevski,et al. A general mixed covolume framework for constructing conservative schemes for elliptic problems , 1999, Math. Comput..
[11] Panayot S. Vassilevski,et al. Finite volume methods for convection-diffusion problems , 1996 .
[12] So-Hsiang Chou,et al. Analysis and convergence of a covolume method for the generalized Stokes problem , 1997, Math. Comput..
[13] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[14] Chaoqun Liu,et al. The finite volume-element method (FVE) for planar cavity flow , 1989 .
[15] Do Y. Kwak,et al. A Covolume Method Based on Rotated Bilinears for the Generalized Stokes Problem , 1998 .
[16] I. Babuska. The Finite Element Method with Penalty , 1973 .
[17] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[18] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .