Statistical Learning Approaches to Information Filtering

[1]  Volker Tresp,et al.  A nonparametric hierarchical bayesian framework for information filtering , 2004, SIGIR '04.

[2]  Volker Tresp,et al.  Heterogenous Data Fusion via a Probabilistic Latent-Variable Model , 2004, ARCS.

[3]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[4]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[5]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[6]  Hans-Peter Kriegel,et al.  Ieee Transactions on Knowledge and Data Engineering Probabilistic Memory-based Collaborative Filtering , 2022 .

[7]  Hans-Peter Kriegel,et al.  Knowing a tree from the forest: art image retrieval using a society of profiles , 2003, MULTIMEDIA '03.

[8]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Xiaowei Xu,et al.  A Hybrid Relevance-Feedback Approach to Text Retrieval , 2003, ECIR.

[10]  Xiaowei Xu,et al.  Representative Sampling for Text Classification Using Support Vector Machines , 2003, ECIR.

[11]  Hans-Peter Kriegel,et al.  Feature Weighting and Instance Selection for Collaborative Filtering: An Information-Theoretic Approach* , 2003, Knowledge and Information Systems.

[12]  Wei-Ying Ma,et al.  Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes , 2002, UAI.

[13]  Hans-Peter Kriegel,et al.  Removing redundancy and inconsistency in memory-based collaborative filtering , 2002, CIKM '02.

[14]  Simon J. Godsill,et al.  Audio information retrieval: a bibliographical study , 2002 .

[15]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[16]  Tong Zhang,et al.  Recommender systems using linear classifiers , 2002 .

[17]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[18]  David Cohn,et al.  Informed Projections , 2002, NIPS.

[19]  Hans-Peter Kriegel,et al.  Instance Selection Techniques for Memory-based Collaborative Filtering , 2002, SDM.

[20]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[21]  Kai Yu,et al.  Feature weighting and instance selection for collaborative filtering , 2001, 12th International Workshop on Database and Expert Systems Applications.

[22]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[23]  David C. Gibbon,et al.  Relevance Feedback using Support Vector Machines , 2001, ICML.

[24]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[25]  Sanjoy Dasgupta,et al.  A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.

[26]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[27]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[28]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[29]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[30]  Qi Tian,et al.  Incorporate support vector machines to content-based image retrieval with relevance feedback , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[31]  Michael J. Pazzani,et al.  Collaborative Filtering with the Simple Bayesian Classifier , 2000, PRICAI.

[32]  David M. Pennock,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[33]  E. Y. Chang,et al.  Toward perception-based image retrieval , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[34]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[35]  P. Bartlett,et al.  Probabilities for SV Machines , 2000 .

[36]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[37]  Michael I. Jordan,et al.  Bayesian parameter estimation via variational methods , 2000, Stat. Comput..

[38]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[39]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[40]  Michael J. Pazzani,et al.  A personal news agent that talks, learns and explains , 1999, AGENTS '99.

[41]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[42]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[43]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[44]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[45]  Justin Zobel,et al.  Manipulation of music for melody matching , 1998, MULTIMEDIA '98.

[46]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[47]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[48]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[49]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[50]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[51]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[52]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[53]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[54]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[55]  L. Ryan,et al.  Latent Variable Models for Mixed Discrete and Continuous Outcomes , 1997 .

[56]  Thorsten Joachims,et al.  Web Watcher: A Tour Guide for the World Wide Web , 1997, IJCAI.

[57]  I. Moustaki A latent trait and a latent class model for mixed observed variables , 1996 .

[58]  Ingemar J. Cox,et al.  PicHunter: Bayesian relevance feedback for image retrieval , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[59]  Michael J. Pazzani,et al.  Syskill & Webert: Identifying Interesting Web Sites , 1996, AAAI/IAAI, Vol. 1.

[60]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[62]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[63]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[64]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[65]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[66]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[67]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[68]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[69]  David D. Lewis,et al.  Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.

[70]  Pattie Maes,et al.  Agents that reduce work and information overload , 1994, CACM.

[71]  David Heckerman,et al.  Troubleshooting Under Uncertainty , 1994 .

[72]  Pattie Maes,et al.  Learning Interface Agents , 1993, AAAI.

[73]  Susan T. Dumais,et al.  Personalized information delivery: an analysis of information filtering methods , 1992, CACM.

[74]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[75]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[76]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[77]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .