CBF measurements using multidelay pseudocontinuous and velocity‐selective arterial spin labeling in patients with long arterial transit delays: Comparison with xenon CT CBF

To test the theory that velocity‐selective arterial spin labeling (VSASL) is insensitive to transit delay.

[1]  C. Beaulieu,et al.  Pulsed arterial spin labeling parameter optimization for an elderly population , 2006, Journal of magnetic resonance imaging : JMRI.

[2]  Wen-Chau Wu,et al.  Velocity‐selective arterial spin labeling , 2006, Magnetic resonance in medicine.

[3]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[4]  S Warach,et al.  A general kinetic model for quantitative perfusion imaging with arterial spin labeling , 1998, Magnetic resonance in medicine.

[5]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[6]  A Takaku,et al.  Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. , 1969, Archives of neurology.

[7]  D. Alsop,et al.  Efficiency of inversion pulses for background suppressed arterial spin labeling , 2005, Magnetic resonance in medicine.

[8]  Wen-Chau Wu,et al.  Intravascular effect in velocity-selective arterial spin labeling: The choice of inflow time and cutoff velocity , 2006, NeuroImage.

[9]  Z H Cho,et al.  The effects of random directional distributed flow in nuclear magnetic resonance imaging. , 1987, Medical physics.

[10]  R. Bammer,et al.  Real‐time diffusion‐perfusion mismatch analysis in acute stroke , 2010, Journal of magnetic resonance imaging : JMRI.

[11]  A. Marmarou,et al.  Stable xenon versus radiolabeled microsphere cerebral blood flow measurements in baboons. , 1989, Stroke.

[12]  E. Wong,et al.  Velocity Selective Inversion Pulse Trains for Velocity Selective Arterial Spin Labeling , 2008 .

[13]  M E Moseley,et al.  Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients , 2009, Neurology.

[14]  J. Detre,et al.  Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Matus Straka,et al.  Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow , 2010, Magnetic resonance in medicine.

[16]  V Ganesan,et al.  MR Perfusion Imaging in Moyamoya Syndrome: Potential Implications for Clinical Evaluation of Occlusive Cerebrovascular Disease , 2001, Stroke.

[17]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. L. Davis,et al.  Mr perfusion studies with t1‐weighted echo planar imaging , 1995, Magnetic resonance in medicine.

[19]  T. Reese,et al.  Multislice perfusion and perfusion territory imaging in humans with separate label and image coils , 1999, Magnetic resonance in medicine.

[20]  A. Nobre,et al.  Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. , 1994, Radiology.

[21]  Jack L. Lancaster,et al.  CBF changes during brain activation: fMRI vs. PET , 2004, NeuroImage.

[22]  B. Rosen,et al.  Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix , 2003, Magnetic resonance in medicine.

[23]  Hengyi Rao,et al.  Arterial spin-labeled perfusion MRI in basic and clinical neuroscience , 2009, Current opinion in neurology.

[24]  Xavier Golay,et al.  Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla , 2004, Magnetic resonance in medicine.