Roe-type schemes for shallow water magnetohydrodynamics with hyperbolic divergence cleaning
暂无分享,去创建一个
[1] Claus-Dieter Munz,et al. Maxwell's equations when the charge conservation is not satisfied , 1999 .
[2] Claus-Dieter Munz,et al. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .
[3] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[4] Hans d,et al. Multi-dimensional upwind constrained transport on unstructured grids for 'shallow water' magnetohydrodynamics , 2001 .
[5] Constantine M. Dafermos. Quasilinear Hyperbolic Systems with Involutions , 1986 .
[6] Gerald Warnecke,et al. Application of space-time CE/SE method to shallow water magnetohydrodynamic equations , 2006 .
[7] S. Mishra,et al. Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..
[8] Manuel Torrilhon,et al. Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..
[9] Manuel Torrilhon,et al. Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..
[10] R. I. Klein,et al. An unsplit, cell-centered Godunov method for ideal MHD , 2005 .
[11] I. Toumi. A weak formulation of roe's approximate riemann solver , 1992 .
[12] C. Munz,et al. Physical Symmetries and Hyperbolic GLM Divergence Correction Scheme for Maxwell and MHD Equations , 2003 .
[13] F. Kemm. A comparative study of TVD‐limiters—well‐known limiters and an introduction of new ones , 2011 .
[14] N. Risebro,et al. STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION , 2009 .
[15] Claus-Dieter Munz,et al. A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..
[16] Friedemann Kemm,et al. CFL-Number-dependent TVD-Limiters , 2012 .
[17] K. Waagan,et al. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..
[18] Eitan Tadmor,et al. Constraint Preserving Schemes Using Potential-Based Fluxes. II. Genuinely Multidimensional Systems of Conservation Laws , 2011, SIAM J. Numer. Anal..
[19] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .
[21] E. Tadmor,et al. Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations , 2012 .
[22] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[23] B. M. Marder,et al. A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .
[24] Philip L. Roe,et al. An upwind scheme for magnetohydrodynamics , 1995 .
[25] James A. Rossmanith. A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics , 2002 .
[26] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[27] Hyperbolic theory of the ‘ ‘ shallow water ’ ’ magnetohydrodynamics equations , 2001 .
[29] S. K. Godunov. Symmetric form of the magnetohydrodynamic equation , 1972 .
[30] 浅倉 史興,et al. 書評 C.Dafermos: Hyperbolic Conservation Laws in Continuum Physics , 2003 .
[31] C. Munz,et al. Hyperbolic GLM Scheme for Elliptic Constraints in Computational Electromagnetics and MHD , 2005 .
[32] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[33] Friedemann Kemm,et al. On the origin of divergence errors in MHD simulations and consequences for numerical schemes , 2013 .
[34] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[35] James A. Rossmanith,et al. An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..
[36] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .
[37] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[38] Peter A. Gilman,et al. Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline , 2000 .
[39] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[40] C. Dafermos. Hyberbolic Conservation Laws in Continuum Physics , 2000 .
[41] Dinshaw Balsara,et al. Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .
[42] E. Tadmor,et al. Constraint Preserving Schemes Using Potential-based Fluxes.i. Multidimensional Transport Equations , 2022 .
[43] D. Kröner,et al. Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system , 2005 .