Roe-type schemes for shallow water magnetohydrodynamics with hyperbolic divergence cleaning

Unsplit implementation of hyperbolic divergence cleaningGalilean invariant hyperbolic divergence cleaning (= Powell+GLM)Via Roe-linearization full control on wave-wise numerical viscosity We discuss Roe-type linearizations for non-conservative shallow water magnetohydrodynamics without and with hyperbolic divergence cleaning.

[1]  Claus-Dieter Munz,et al.  Maxwell's equations when the charge conservation is not satisfied , 1999 .

[2]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[3]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[4]  Hans d,et al.  Multi-dimensional upwind constrained transport on unstructured grids for 'shallow water' magnetohydrodynamics , 2001 .

[5]  Constantine M. Dafermos Quasilinear Hyperbolic Systems with Involutions , 1986 .

[6]  Gerald Warnecke,et al.  Application of space-time CE/SE method to shallow water magnetohydrodynamic equations , 2006 .

[7]  S. Mishra,et al.  Splitting based finite volume schemes for ideal MHD equations , 2009, J. Comput. Phys..

[8]  Manuel Torrilhon,et al.  Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..

[9]  Manuel Torrilhon,et al.  Constraint-Preserving Upwind Methods for Multidimensional Advection Equations , 2004, SIAM J. Numer. Anal..

[10]  R. I. Klein,et al.  An unsplit, cell-centered Godunov method for ideal MHD , 2005 .

[11]  I. Toumi A weak formulation of roe's approximate riemann solver , 1992 .

[12]  C. Munz,et al.  Physical Symmetries and Hyperbolic GLM Divergence Correction Scheme for Maxwell and MHD Equations , 2003 .

[13]  F. Kemm A comparative study of TVD‐limiters—well‐known limiters and an introduction of new ones , 2011 .

[14]  N. Risebro,et al.  STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION , 2009 .

[15]  Claus-Dieter Munz,et al.  A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..

[16]  Friedemann Kemm,et al.  CFL-Number-dependent TVD-Limiters , 2012 .

[17]  K. Waagan,et al.  A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..

[18]  Eitan Tadmor,et al.  Constraint Preserving Schemes Using Potential-Based Fluxes. II. Genuinely Multidimensional Systems of Conservation Laws , 2011, SIAM J. Numer. Anal..

[19]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[21]  E. Tadmor,et al.  Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations , 2012 .

[22]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[23]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .

[24]  Philip L. Roe,et al.  An upwind scheme for magnetohydrodynamics , 1995 .

[25]  James A. Rossmanith A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics , 2002 .

[26]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[27]  Hyperbolic theory of the ‘ ‘ shallow water ’ ’ magnetohydrodynamics equations , 2001 .

[29]  S. K. Godunov Symmetric form of the magnetohydrodynamic equation , 1972 .

[30]  浅倉 史興,et al.  書評 C.Dafermos: Hyperbolic Conservation Laws in Continuum Physics , 2003 .

[31]  C. Munz,et al.  Hyperbolic GLM Scheme for Elliptic Constraints in Computational Electromagnetics and MHD , 2005 .

[32]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[33]  Friedemann Kemm,et al.  On the origin of divergence errors in MHD simulations and consequences for numerical schemes , 2013 .

[34]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[35]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..

[36]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[37]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[38]  Peter A. Gilman,et al.  Magnetohydrodynamic “Shallow Water” Equations for the Solar Tachocline , 2000 .

[39]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[40]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[41]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[42]  E. Tadmor,et al.  Constraint Preserving Schemes Using Potential-based Fluxes.i. Multidimensional Transport Equations , 2022 .

[43]  D. Kröner,et al.  Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system , 2005 .