Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model

[1]  K. Alitalo,et al.  Characterization of ANGPT2 mutations associated with primary lymphedema , 2020, Science Translational Medicine.

[2]  W. Min,et al.  Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations , 2020, Arteriosclerosis, thrombosis, and vascular biology.

[3]  B. Engelhardt,et al.  Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS , 2020, The Journal of clinical investigation.

[4]  A. Heredia,et al.  Novel Chronic Mouse Model of Cerebral Cavernous Malformations , 2020, Stroke.

[5]  Bernardo L. Sabatini,et al.  Caveolae in the CNS arterioles mediate neurovascular coupling , 2020, Nature.

[6]  I. Nabi,et al.  Caveolae: The FAQs , 2020, Traffic.

[7]  C. Lengner,et al.  Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation , 2019, Science Translational Medicine.

[8]  A. Glading,et al.  VEGF signalling enhances lesion burden in KRIT1 deficient mice , 2019, Journal of cellular and molecular medicine.

[9]  E. Boscolo,et al.  Constitutive Active Mutant TIE2 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte Recruitment , 2019, Scientific Reports.

[10]  M. Corada,et al.  Endothelial cell clonal expansion in the development of cerebral cavernous malformations , 2019, Nature Communications.

[11]  I. Miinalainen,et al.  Angiopoietin-4-dependent venous maturation and fluid drainage in the peripheral retina , 2018, eLife.

[12]  D. Marchuk,et al.  Cerebral Cavernous Malformations Develop through Clonal Expansion of Mutant Endothelial Cells , 2018, bioRxiv.

[13]  W. Min,et al.  SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis , 2018, Nature Communications.

[14]  Bin Zhou,et al.  Genetic Targeting of Organ-Specific Blood Vessels , 2018, Circulation research.

[15]  A. Di Polo,et al.  Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection , 2018, eLife.

[16]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[17]  A. Ghosh,et al.  Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP , 2018, Proceedings of the National Academy of Sciences.

[18]  H. Augustin,et al.  Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. , 2017, The Journal of clinical investigation.

[19]  K. Hess,et al.  TIE2 Associates with Caveolae and Regulates Caveolin-1 To Promote Their Nuclear Translocation , 2017, Molecular and Cellular Biology.

[20]  J. Grutzendler,et al.  A FluoroNissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging , 2017, Nature Neuroscience.

[21]  D. Ginty,et al.  Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis , 2017, Neuron.

[22]  K. Alitalo,et al.  Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization , 2017, Proceedings of the National Academy of Sciences.

[23]  K. Alitalo,et al.  Tie1 controls angiopoietin function in vascular remodeling and inflammation. , 2016, The Journal of clinical investigation.

[24]  K. Alitalo,et al.  Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. , 2016, The Journal of clinical investigation.

[25]  D. Toomre,et al.  Augmented endothelial exocytosis of angiopoietin-2 resulting from CCM3-deficiency contributes to the progression of cerebral cavernous malformation , 2016, Nature Medicine.

[26]  Zinan Zhou,et al.  Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signaling , 2016, Nature.

[27]  Junhao Hu,et al.  The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells , 2015, Cell reports.

[28]  E. Boscolo,et al.  Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. , 2015, The Journal of clinical investigation.

[29]  E. Tournier-Lasserve,et al.  Cerebral Cavernous Malformation-1 Protein Controls DLL4-Notch3 Signaling Between the Endothelium and Pericytes , 2015, Stroke.

[30]  A. Gingras,et al.  CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling , 2015, Nature Communications.

[31]  A. Flenniken,et al.  A lymphatic defect causes ocular hypertension and glaucoma in mice. , 2014, The Journal of clinical investigation.

[32]  Sila Appak,et al.  Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions , 2014, Genes & development.

[33]  Yoav Mayshar,et al.  Mfsd2a is critical for the formation and function of the blood–brain barrier , 2014, Nature.

[34]  W. Min,et al.  AIP1 Mediates Vascular Endothelial Cell Growth Factor Receptor-3–Dependent Angiogenic and Lymphangiogenic Responses , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[35]  Yingke Xu,et al.  A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. , 2013, Developmental cell.

[36]  A. Pendergast,et al.  Abl kinases are required for vascular function, Tie2 expression, and angiopoietin-1–mediated survival , 2013, Proceedings of the National Academy of Sciences.

[37]  A. Ghabrial,et al.  Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. , 2013, Developmental cell.

[38]  L. Ferrarini,et al.  EndMT contributes to the onset and progression of cerebral cavernous malformations , 2013, Nature.

[39]  J. Grutzendler,et al.  In Vivo Imaging of Cerebral Microvascular Plasticity from Birth to Death , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  M. Felcht,et al.  Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. , 2012, The Journal of clinical investigation.

[41]  D. Poulikakos,et al.  Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo , 2012, Nature Communications.

[42]  B. Zlokovic,et al.  Central nervous system pericytes in health and disease , 2011, Nature Neuroscience.

[43]  E. Dejana,et al.  Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice , 2011, The Journal of experimental medicine.

[44]  Y. Mukouyama,et al.  Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. , 2011, Human molecular genetics.

[45]  Amber N. Stratman,et al.  Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. , 2011, The Journal of clinical investigation.

[46]  L. Stewart,et al.  Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. , 2011, Cancer cell.

[47]  R. Kucherlapati,et al.  A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. , 2011, Human molecular genetics.

[48]  R. Adams,et al.  Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice , 2010, Nature Protocols.

[49]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[50]  T. Force,et al.  CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation , 2010, Journal of Cell Science.

[51]  C. Betsholtz,et al.  Endothelial-mural cell signaling in vascular development and angiogenesis. , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[52]  N. Petit,et al.  Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations , 2009, Disease Models & Mechanisms.

[53]  G. Steinberg,et al.  Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. , 2009, Human molecular genetics.

[54]  Brian Raught,et al.  A PP2A Phosphatase High Density Interaction Network Identifies a Novel Striatin-interacting Phosphatase and Kinase Complex Linked to the Cerebral Cavernous Malformation 3 (CCM3) Protein*S , 2009, Molecular & Cellular Proteomics.

[55]  U. Felbor,et al.  A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells , 2008, Human molecular genetics.

[56]  J. Mulliken,et al.  Somatic Mutations in the Angiopoietin-Receptor TIE2 Can Cause Both Solitary and Multiple Sporadic Venous Malformations , 2008, Nature Genetics.

[57]  Lauri Eklund,et al.  Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts , 2008, Nature Cell Biology.

[58]  T. Kodama,et al.  Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1 , 2008, Nature Cell Biology.

[59]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[60]  Jackelyn A. Alva,et al.  VE‐cadherin‐CreERT2 transgenic mouse: A model for inducible recombination in the endothelium , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[61]  E. Vicaut,et al.  Genotype–phenotype correlations in cerebral cavernous malformations patients , 2006, Annals of neurology.

[62]  G. Yancopoulos,et al.  Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells , 2006, Proceedings of the National Academy of Sciences.

[63]  D. Dumont,et al.  Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization , 2006, Journal of Cell Science.

[64]  M. Vikkula,et al.  Cerebral cavernous malformation: new molecular and clinical insights , 2006, Journal of Medical Genetics.

[65]  B. Olsen,et al.  Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. , 2006, Experimental cell research.

[66]  C. Liquori,et al.  Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. , 2003, American journal of human genetics.

[67]  A. Monneron,et al.  Striatin, a calmodulin‐dependent scaffolding protein, directly binds caveolin‐1 , 2001, FEBS letters.

[68]  P. Campochiaro,et al.  Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization , 2000, Journal of cellular physiology.

[69]  J. W. Thomas,et al.  Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). , 1999, Human molecular genetics.

[70]  K. Plate Mechanisms of angiogenesis in the brain. , 1999, Journal of neuropathology and experimental neurology.

[71]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[72]  P. Wesseling,et al.  Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. , 1994, The American journal of pathology.

[73]  M. Hadley,et al.  Cerebral cavernous malformations. Incidence and familial occurrence. , 1988, The New England journal of medicine.

[74]  R. Kalluri,et al.  Conversion of vascular endothelial cells into multipotent stem-like cells , 2010, Nature Medicine.

[75]  M. Clanet,et al.  Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. , 2005, American journal of human genetics.

[76]  H. Mennel [Mechanisms of angiogenesis in the brain]. , 2000, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[77]  B. Rilliet,et al.  [131 cases of cavernous angioma (cavernomas) of the CNS, discovered by retrospective analysis of 24,535 autopsies]. , 1989, Neuro-Chirurgie.

[78]  Cerebral cavernous malformations. , 1988, New England Journal of Medicine.