Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensors

The authors have compared the sensitivities of resonant optical biochemical sensors, based on both periodic and aperiodic porous silicon structures, such as the Bragg and the Thue-Morse multilayer. The shifts of the reflectivity spectra of these devices on exposure to several chemical compounds have been measured: the aperiodic multilayer is more sensitive than the periodic one. Adopting a simple theoretical model of the optical response of devices, they inferred that the aperiodic structure provide a higher filling capability with respect to the periodic one, due to the lower number of interfaces.

[1]  Kohmoto,et al.  Multifractal wave functions on a Fibonacci lattice. , 1989, Physical review. B, Condensed matter.

[2]  Philippe M. Fauchet,et al.  Quantitative analysis of the sensitivity of porous silicon optical biosensors , 2006 .

[3]  Cheng,et al.  Structure and electronic properties of Thue-Morse lattices. , 1988, Physical review. B, Condensed matter.

[4]  Lorenzo Pavesi,et al.  Porous silicon microcavities as optical chemical sensors , 2000 .

[5]  Luca De Stefano,et al.  Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. , 2006, Optics express.

[6]  Molecular Identification by Time‐Resolved Interferometry in a Porous Silicon Film , 2001 .

[7]  T. I. Cox,et al.  Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores , 2003 .

[8]  L. D. Negro,et al.  Spectrally enhanced light emission from aperiodic photonic structures , 2005 .

[9]  István Bársony,et al.  Porous silicon multilayer stack for sensitive refractive index determination of pure solvents , 2005 .

[10]  A. Loni,et al.  Novel liquid sensor based on porous silicon optical waveguides , 1998, IEEE Photonics Technology Letters.

[11]  Philippe M. Fauchet,et al.  Macroporous Silicon Microcavities for Macromolecule Detection , 2005 .

[12]  Michael J. Sailor,et al.  A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface , 1999 .

[13]  Philippe M. Fauchet,et al.  Biosensing using porous silicon photonic bandgap structures , 2005, SPIE Optics East.

[14]  L. Dal Negro,et al.  Light transport through the band-edge states of Fibonacci quasicrystals. , 2003, Physical review letters.

[15]  P. Hesketh,et al.  Rapid, reversible, sensitive porous silicon gas sensor , 2002 .

[16]  L. De Stefano,et al.  Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology , 2004, IEEE Transactions on Nanotechnology.

[17]  John D. Joannopoulos,et al.  Photonic band gaps and localization in the Thue–Morse structures , 2005 .

[18]  Luigi Moretti,et al.  Optical sensing of flammable substances using porous silicon microcavities , 2003 .

[19]  Luca De Stefano,et al.  Porous silicon-based optical microsensor for the detection of L-glutamine. , 2006, Biosensors & bioelectronics.

[20]  P. Allcock,et al.  Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors , 2001 .

[21]  Mher Ghulinyan,et al.  Porous silicon-based rugate filters. , 2005, Applied optics.

[22]  L. Canham,et al.  Vapor sensing using the optical properties of porous silicon Bragg mirrors , 1999 .