Hamiltonian Boundary Value Method for the Nonlinear Schrödinger Equation and the Korteweg-de Vries Equation

In this paper, we introduce the Hamiltonian boundary value method (HBVM) to solve nonlinear Hamiltonian PDEs. We use the idea of Fourier pseudospectral method in spatial direction, which leads to the finite-dimensional Hamiltonian system. The HBVM, which can preserve the Hamiltonian effectively, is applied in time direction. Then the nonlinear Schrodinger (NLS) equation and the Korteweg-de Vries (KdV) equation are taken as examples to show the validity of the proposed method. Numerical results confirm that the proposed method can simulate the propagation and collision of different solitons well. Meanwhile the corresponding errors in Hamiltonian and other intrinsic invariants are presented to show the good preservation property of the proposed method during long-time numerical calculation.

[1]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[2]  Yuto Miyatake,et al.  Conservative finite difference schemes for the Degasperis-Procesi equation , 2012, J. Comput. Appl. Math..

[3]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[4]  M. Qin,et al.  Multi-Symplectic Method for the Zakharov-Kuznetsov Equation , 2015 .

[5]  Luigi Brugnano,et al.  Line integral methods which preserve all invariants of conservative problems , 2012, J. Comput. Appl. Math..

[6]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.

[7]  Yajuan Sun,et al.  Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems , 2013, Numerical Algorithms.

[8]  Masaaki Sugihara,et al.  The discrete variational derivative method based on discrete differential forms , 2012, J. Comput. Phys..

[9]  O. Runborg,et al.  Coupling of Gaussian beam and finite difference solvers for semiclassical Schrödinger equations , 2015 .

[10]  Songhe Song,et al.  Explicit Multi-Symplectic Splitting Methods for the Nonlinear Dirac Equation , 2014 .

[11]  Yinnian He,et al.  Analysis of an Implicit Fully Discrete Local Discontinuous Galerkin Method for the Time-Fractional Kdv Equation , 2015 .

[12]  Yushun Wang,et al.  Numerical Analysis of AVF Methods for Three-Dimensional Time-Domain Maxwell’s Equations , 2016, J. Sci. Comput..

[13]  Songhe Song,et al.  Average vector field methods for the coupled Schrödinger—KdV equations , 2014 .

[14]  Kang Feng,et al.  Symplectic Difference Schemes for Hamiltonian Systems , 2010 .

[15]  Luigi Brugnano,et al.  Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..

[16]  Songhe Song,et al.  Multi-symplectic methods for the Ito-type coupled KdV equation , 2012, Appl. Math. Comput..

[17]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[18]  Brynjulf Owren,et al.  Preserving multiple first integrals by discrete gradients , 2010, 1011.0478.

[19]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[20]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[21]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[22]  Xu Qian,et al.  A semi-explicit multi-symplectic splitting scheme for a 3-coupled nonlinear Schrödinger equation , 2014, Comput. Phys. Commun..

[23]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .

[24]  Song Song-he,et al.  Explicit multi-symplectic method for the Zakharov—Kuznetsov equation , 2012 .

[25]  Yuto Miyatake,et al.  An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems , 2014 .

[26]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[27]  Songhe Song,et al.  Symplectic wavelet collocation method for Hamiltonian wave equations , 2010, J. Comput. Phys..

[28]  Bülent Karasözen,et al.  Energy preserving integration of bi-Hamiltonian partial differential equations , 2013, Appl. Math. Lett..