Complete Genome Sequence and Lytic Phase Transcription Profile of a Coccolithovirus

The genus Coccolithovirus is a recently discovered group of viruses that infect the globally important marine calcifying microalga Emiliania huxleyi. Among the 472 predicted genes of the 407,339–base pair genome are a variety of unexpected genes, most notably those involved in biosynthesis of ceramide, a sphingolipid known to induce apoptosis. Uniquely for algal viruses, it also contains six RNA polymerase subunits and a novel promoter, suggesting this virus encodes its own transcription machinery. Microarray transcriptomic analysis reveals that 65% of the predicted virus-encoded genes are expressed during lytic infection of E. huxleyi.

[1]  C. Brussaard,et al.  AUTOLYSIS KINETICS OF THE MARINE DIATOM DITYLUM BRIGHTWELLII (BACILLARIOPHYCEAE) UNDER NITROGEN AND PHOSPHORUS LIMITATION AND STARVATION 1 , 1997 .

[2]  Michael Knappertsbusch,et al.  A model system approach to biological climate forcing : The example of Emiliania huxleyi , 1993 .

[3]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[4]  E. Koonin,et al.  Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses , 2001, Journal of Virology.

[5]  Properties of the cysteine-less Pho84 phosphate transporter of Saccharomyces cerevisiae. , 2001, Biochemical and biophysical research communications.

[6]  J. V. Van Etten,et al.  Phycodnaviridae– large DNA algal viruses , 2002, Archives of Virology.

[7]  B. Persson,et al.  Expression and purification of the high-affinity phosphate transporter of Saccharomyces cerevisiae. , 1995, European journal of biochemistry.

[8]  Y. Hannun,et al.  The complex life of simple sphingolipids , 2004, EMBO reports.

[9]  R. Sandaa,et al.  Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). , 2001, Virology.

[10]  P. Westbroek,et al.  Coccolith Production (Biomineralization) in the Marine Alga Emiliania huxleyi , 1989 .

[11]  Ivo Galli,et al.  The AT-rich tract of the SV40 ori core: negative synergism and specific recognition by single stranded and duplex DNA binding proteins , 1992, Nucleic Acids Res..

[12]  P. Falkowski,et al.  Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation , 1998 .

[13]  Alfred H. Merrill,et al.  De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway* , 2002, The Journal of Biological Chemistry.

[14]  J. V. Etten,et al.  Unusual Life Style of Giant Chlorella Viruses , 2003 .

[15]  T. Pohl,et al.  The complete DNA sequence of the Ectocarpus siliculosus Virus EsV-1 genome. , 2001, Virology.

[16]  J. Claverie,et al.  The 1.2-Megabase Genome Sequence of Mimivirus , 2004, Science.

[17]  Jean-Michel Claverie,et al.  A Giant Virus in Amoebae , 2003, Science.

[18]  B. Leadbeater,et al.  The Haptophyte algae , 1994 .

[19]  D. Schroeder,et al.  Coccolithovirus (Phycodnaviridae): Characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi , 2002, Archives of Virology.

[20]  Paul G. Falkowski,et al.  Cell death in planktonic, photosynthetic microorganisms , 2004, Nature Reviews Microbiology.

[21]  G. Kroemer,et al.  The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis , 1997, The Journal of experimental medicine.

[22]  Y. Hannun,et al.  Ceramide: an intracellular signal for apoptosis. , 1995, Trends in biochemical sciences.

[23]  P. Branton,et al.  Regulation of apoptosis by viral gene products , 1997, Journal of virology.

[24]  Y. Hannun,et al.  Programmed cell death induced by ceramide. , 1993, Science.