The Adaptive Lasso and Its Oracle Properties
暂无分享,去创建一个
[1] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[2] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[3] P. McCullagh,et al. Generalized Linear Models , 1992 .
[4] P. McCullagh,et al. Generalized Linear Models, 2nd Edn. , 1990 .
[5] J. H. Schuenemeyer,et al. Generalized Linear Models (2nd ed.) , 1992 .
[6] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[7] J. Friedman,et al. [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .
[8] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[9] C. Geyer. On the Asymptotics of Constrained $M$-Estimation , 1994 .
[10] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[11] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[12] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[13] L. Breiman. Heuristics of instability and stabilization in model selection , 1996 .
[14] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[15] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[16] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[17] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[18] Xiaotong Shen,et al. Adaptive Model Selection , 2002 .
[19] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[20] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[21] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[22] D. Hunter,et al. Variable Selection using MM Algorithms. , 2005, Annals of statistics.
[23] Runze Li,et al. Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery , 2006, math/0602133.
[24] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[25] G. Wahba,et al. A NOTE ON THE LASSO AND RELATED PROCEDURES IN MODEL SELECTION , 2006 .