Volumetric Boolean sum

Boolean sum is a well-known surface construction operation (Cohen et al., 2001). In the light of the growing interest in trivariate B-spline and NURBs, for example in Isogeometry analysis, in this work we extend this operator for trivariate volumetric elements. Consider six arbitrary tensor product B-spline and/or NURBs surfaces that share boundaries along a cube-like topology. The volume that is enclosed by these six surfaces is parameterized using a volumetric extension of the Boolean sum for surfaces, while the boundaries of the proposed volumetric extension interpolate the six input surfaces. Finally, a generalization of the Boolean sum idea is presented for the general multivariate case.

[1]  James E. Cobb Tiling the sphere with rational bezier patches , 1994 .

[2]  Gershon Elber,et al.  Subdivision termination criteria in subdivision multivariate solvers using dual hyperplanes representations , 2007, Comput. Aided Des..

[3]  Wenping Wang,et al.  Shape optimization of quad mesh elements , 2011, Comput. Graph..

[4]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[5]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[6]  Hong Qin,et al.  Generalized PolyCube Trivariate Splines , 2010, 2010 Shape Modeling International Conference.

[7]  Gershon Elber,et al.  Subdivision Termination Criteria in Subdivision Multivariate Solvers , 2006, GMP.

[8]  Gershon Elber,et al.  Self-intersection detection and elimination in freeform curves and surfaces , 2008, Comput. Aided Des..

[9]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[10]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[11]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[12]  Gregory M. Nielson,et al.  Progressive Volume Models for Rectilinear Data using Tetrahedral Coons Volumes , 2000 .

[13]  Charlie C. L. Wang,et al.  Algebraic grid generation on trimmed parametric surface using non‐self‐overlapping planar Coons patch , 2004 .