Molecular characterization and toxicological effects of citrate-coated silver nanoparticles in a terrestrial invertebrate, the earthworm (Eisenia fetida)

[1]  J. Scott-Fordsmand,et al.  Time-course profiling of molecular stress responses to silver nanoparticles in the earthworm Eisenia fetida. , 2013, Ecotoxicology and environmental safety.

[2]  H. Järventaus,et al.  Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. , 2013, Toxicology.

[3]  Sun Young Park,et al.  Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. , 2013, Chemosphere.

[4]  Susana I. L. Gomes,et al.  Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. , 2013, Journal of hazardous materials.

[5]  Paul Westerhoff,et al.  Biological accumulation of engineered nanomaterials: a review of current knowledge. , 2013, Environmental science. Processes & impacts.

[6]  Kerstin Hund-Rinke,et al.  Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test , 2013, Environmental toxicology and chemistry.

[7]  D. Butterfield,et al.  Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. , 2012, Environmental pollution.

[8]  Qixing Zhou,et al.  Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. , 2012, Environmental pollution.

[9]  M. Ferrante,et al.  Biochemical and bioaccumulation approaches for investigating marine pollution using Mediterranean rainbow wrasse, Coris julis (Linneaus 1798). , 2012, Ecotoxicology and environmental safety.

[10]  Stephen Lofts,et al.  Metal‐based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates , 2012, Environmental toxicology and chemistry.

[11]  G. Sayler,et al.  Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure. , 2012, Environmental pollution.

[12]  B. Berkowitz,et al.  Transport of silver nanoparticles (AgNPs) in soil. , 2012, Chemosphere.

[13]  D. Chittleborough,et al.  Retention and dissolution of engineered silver nanoparticles in natural soils , 2012 .

[14]  H. Autrup,et al.  Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. , 2012, Environmental science & technology.

[15]  Jinhee Choi,et al.  Oxidative stress‐related PMK‐1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans , 2012, Environmental toxicology and chemistry.

[16]  D. Oughton,et al.  Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida , 2012, Nanotoxicology.

[17]  Gunnar Brunborg,et al.  Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. , 2012, Toxicology.

[18]  Catherine Sirguey,et al.  Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. , 2011, Environmental pollution.

[19]  Gregory V Lowry,et al.  Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida) , 2011, Nanotoxicology.

[20]  Qixing Zhou,et al.  Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. , 2011, Chemosphere.

[21]  Maja Šrut,et al.  Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment? , 2011, Environmental pollution.

[22]  J. Lead,et al.  Silver nanoparticles: behaviour and effects in the aquatic environment. , 2011, Environment international.

[23]  Sun Young Park,et al.  Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. , 2011, Aquatic toxicology.

[24]  Jason M. Unrine,et al.  Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida) , 2011, Ecotoxicology.

[25]  O. Tsyusko,et al.  Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). , 2010, Environmental science & technology.

[26]  D. Oughton,et al.  Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). , 2010, Nanomedicine.

[27]  Thomas K. Darlington,et al.  Nanoparticle characteristics affecting environmental fate and transport through soil , 2009, Environmental toxicology and chemistry.

[28]  Jongheop Yi,et al.  Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. , 2009, Environmental science & technology.

[29]  J. Rhee,et al.  Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. , 2008, Aquatic toxicology.

[30]  B. Nowack,et al.  Exposure modeling of engineered nanoparticles in the environment. , 2008, Environmental science & technology.

[31]  K. Vijayavel,et al.  DNA damage and cell necrosis induced by naphthalene due to the modulation of biotransformation enzymes in an estuarine crab Scylla serrata , 2008, Journal of biochemical and molecular toxicology.

[32]  Navid B. Saleh,et al.  Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro , 2007, Environmental health perspectives.

[33]  S. Wohlgemuth,et al.  Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate , 2005, Journal of Experimental Biology.

[34]  G. Barja Minireview: The Quantitative Measurement of H2O2 Generation in Isolated Mitochondria , 2002, Journal of bioenergetics and biomembranes.

[35]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[36]  G. Poirier,et al.  Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum , 1997, Laboratory animals.

[37]  P. Olive,et al.  DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. , 1991, Cancer research.

[38]  E. Cooper,et al.  A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies , 1991, Laboratory animals.

[39]  R. Danis,et al.  A Review of Current Knowledge , 2017 .

[40]  M. Refsnes,et al.  Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. , 2015, Mutagenesis.

[41]  F. Besenbacher,et al.  Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida , 2011, Ecotoxicology.

[42]  Sac-fry Stages,et al.  OECD GUIDELINE FOR TESTING OF CHEMICALS , 2002 .

[43]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .