skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo

By the 4-cell stage of C. elegans embryogenesis, a ventral blastomere, called EMS, is already committed to producing pharyngeal and intestinal cell types. Recessive, maternal-effect mutations in the gene skn-1 prevent EMS from producing both pharyngeal and intestinal cells. In skn-1 mutant embryos, EMS instead produces hypodermal cells and body wall muscle cells, much like its sister blastomere. Genetic analysis suggests that the skn-1 gene product is also required post-embryonically for development of the intestine. We have cloned and sequenced the skn-1 gene and describe sequence similarities to the basic regions of bZIP transcription factors. We propose that the maternally expressed skn-1 gene product acts to specify the fate of the EMS blastomere.

[1]  J. Kimble,et al.  Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans , 1989, Cell.

[2]  C. Nüsslein-Volhard,et al.  A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo , 1989, Cell.

[3]  D. Melton,et al.  Pattern formation during animal development. , 1991, Science.

[4]  H. Horvitz,et al.  unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. , 1980, Genetics.

[5]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[6]  C. Nüsslein-Volhard,et al.  Determination of the embryonic axes of Drosophila. , 1991, Development (Cambridge, England). Supplement.

[7]  Ruth Lehmann,et al.  The Drosophila posterior-group gene nanos functions by repressing hunchback activity , 1989, Nature.

[8]  W. Wood,et al.  Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Albertson Formation of the first cleavage spindle in nematode embryos. , 1984, Developmental biology.

[10]  H. Horvitz,et al.  Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. , 1985, Genetics.

[11]  M. Raff,et al.  All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody , 1981, Cell.

[12]  I. Greenwald,et al.  glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins , 1989, Cell.

[13]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J Kimble,et al.  Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. , 1991, Development.

[15]  A. Fire,et al.  A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. , 1990, Gene.

[16]  V. Pirrotta,et al.  The product of the Drosophila zeste gene binds to specific DNA sequences in white and Ubx. , 1987, The EMBO journal.

[17]  R. Lehmann,et al.  The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. , 1991, Development.

[18]  R. Steward Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function , 1989, Cell.

[19]  J. N. Thomson,et al.  The pharynx of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Tsonwin Hai,et al.  Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. , 1989, Genes & development.

[21]  A. Fire Integrative transformation of Caenorhabditis elegans , 1986, The EMBO journal.

[22]  J. Kimble,et al.  glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans , 1987, Cell.

[23]  M. Levine,et al.  The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila , 1989, Cell.

[24]  P. S. Kim,et al.  Sequence-specific DNA binding by a short peptide dimer. , 1990, Science.

[25]  W. DeGrado,et al.  Design of DNA-binding peptides based on the leucine zipper motif. , 1990, Science.

[26]  David M. Miller,et al.  Differential localization of two myosins within nematode thick filaments , 1983, Cell.

[27]  T. Curran,et al.  Complete nucleotide sequence of a human c-onc gene: deduced amino acid sequence of the human c-fos protein. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[28]  I. Greenwald lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor , 1985, Cell.

[29]  D Bopp,et al.  The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. , 1988, The EMBO journal.

[30]  H. Horvitz,et al.  The lin-12 locus specifies cell fates in caenorhabditis elegans , 1983, Cell.

[31]  K. G. Coleman,et al.  Expression of engrailed proteins in arthropods, annelids, and chordates. , 1989, Cell.

[32]  G. Struhl,et al.  Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos , 1989, Nature.

[33]  S. McKnight,et al.  Scissors-grip model for DNA recognition by a family of leucine zipper proteins. , 1989, Science.

[34]  Steven Henikoff,et al.  PATMAT: a searching and extraction program for sequence, pattern and block queries and databases , 1992, Comput. Appl. Biosci..

[35]  J. Sulston,et al.  Some Observations On Moulting in Caenorhabditis Elegans , 1978 .

[36]  R. Waterston,et al.  The basal component of the nematode dense-body is vinculin. , 1989, The Journal of biological chemistry.

[37]  William B. Wood,et al.  Segregation of developmental potential in early embryos of caenorhabditis elegans , 1980, Cell.

[38]  Kevin Struhl,et al.  Folding transition in the DMA-binding domain of GCN4 on specific binding to DNA , 1990, Nature.

[39]  D. Nathans,et al.  jun-D: a third member of the jun gene family. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Ruth Lehmann,et al.  Nanos is the localized posterior determinant in Drosophila , 1991, Cell.

[41]  D. Hirsh,et al.  Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. , 1988, Genes & development.

[42]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[43]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[44]  R. Hall,et al.  Relationship of Muscle Apolipoprotein E Expression with Markers of Cellular Stress, Metabolism, and Blood Biomarkers in Cognitively Healthy and Impaired Older Adults , 2023, Journal of Alzheimer's disease : JAD.

[45]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[46]  J. Priess,et al.  Cellular interactions in early C. elegans embryos , 1987, Cell.

[47]  David Hirsh,et al.  A trans-spliced leader sequence on actin mRNA in C. elegans , 1987, Cell.

[48]  S. Artavanis-Tsakonas,et al.  Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. Coulson,et al.  Genome linking with yeast artificial chromosomes , 1988, Nature.

[50]  D. Smoller,et al.  The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. , 1990, Genes & development.

[51]  Kathleen Weston,et al.  The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch , 1988, Nature.

[52]  S. Roth,et al.  The polarity of the dorsoventral axis in the drosophila embryo is defined by an extracellular signal , 1991, Cell.

[53]  K. G. Coleman,et al.  Expression of engrailed proteins in arthropods, annelids, and chordates , 1989, Cell.

[54]  E. Schierenberg Cell determination during early embryogenesis of the nematode Caenorhabditis elegans. , 1985, Cold Spring Harbor symposia on quantitative biology.

[55]  P. Meneely,et al.  Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. , 1979, Genetics.

[56]  U. Dietrich,et al.  Functional interactions of neurogenic genes of Drosophila melanogaster. , 1988, Genetics.

[57]  J. Mohler,et al.  Segmentally restricted, cephalic expression of a leucine zipper gene during Drosophila embryogenesis , 1991, Mechanisms of Development.

[58]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. , 1990, Genes & development.

[59]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[60]  E. Schierenberg Reversal of cellular polarity and early cell-cell interaction in the embryos of Caenorhabditis elegans. , 1987, Developmental biology.

[61]  A. Coulson,et al.  Toward a physical map of the genome of the nematode Caenorhabditis elegans. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  E. Davidson,et al.  How embryos work: a comparative view of diverse modes of cell fate specification. , 1990, Development.

[63]  C. Nüsslein-Volhard,et al.  cactus, a maternal gene required for proper formation of the dorsoventral morphogen gradient in Drosophila embryos. , 1991, Development.

[64]  R. J. Fleming,et al.  The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. , 1990, Genes & development.

[65]  J. Priess,et al.  Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. , 1986, Developmental biology.

[66]  E. Davidson Spatial mechanisms of gene regulation in metazoan embryos. , 1991, Development.

[67]  G. Church,et al.  Genomic sequencing. , 1993, Methods in molecular biology.

[68]  L. Avery,et al.  Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans , 1989, Neuron.

[69]  W. Wood,et al.  Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos , 1983, Cell.