β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors

[1]  M. Jackson,et al.  Discovery of b-Arrestin Biased, Orally Bioavailable and CNS Penetrant Neurotensin Receptor 1 (NTR1) Allosteric Modulators. , 2019, Journal of medicinal chemistry.

[2]  M. Caron,et al.  Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors , 2019, bioRxiv.

[3]  P. Conn,et al.  Neuropharmacological Insight from Allosteric Modulation of mGlu Receptors. , 2019, Trends in pharmacological sciences.

[4]  Reid H. J. Olsen,et al.  Structural determinants of 5-HT2B receptor activation and biased agonism , 2018, Nature Structural & Molecular Biology.

[5]  M. Caron,et al.  The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation , 2018, The Journal of Biological Chemistry.

[6]  J. Wess,et al.  Lack of beta-arrestin signaling in the absence of active G proteins , 2018, Nature Communications.

[7]  M. Caron,et al.  Ghrelin receptor antagonism of hyperlocomotion in cocaine‐sensitized mice requires βarrestin‐2 , 2018, Synapse.

[8]  James J. Cook,et al.  Small Animal Multivariate Brain Analysis (SAMBA) – a High Throughput Pipeline with a Validation Framework , 2017, Neuroinformatics.

[9]  A. Prus,et al.  The Neurotensin NTS1 Receptor Agonist PD149163 Produces Antidepressant‐Like Effects in the Forced Swim Test: Further Support for Neurotensin as a Novel Pharmacologic Strategy for Antidepressant Drugs , 2017, Drug development research.

[10]  M. Beckstead,et al.  Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation , 2017, PloS one.

[11]  R. Sunahara,et al.  Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK , 2017, Science Signaling.

[12]  Kirsten A. Porter-Stransky,et al.  Arresting the Development of Addiction: The Role of β-Arrestin 2 in Drug Abuse , 2017, The Journal of Pharmacology and Experimental Therapeutics.

[13]  R. Rodriguiz,et al.  Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties , 2016, Proceedings of the National Academy of Sciences.

[14]  G. Milligan,et al.  Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling* , 2016, The Journal of Biological Chemistry.

[15]  R. Rodriguiz,et al.  ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. , 2016, ACS chemical biology.

[16]  L. Hawk,et al.  Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats , 2016, Psychopharmacology.

[17]  E. Richelson,et al.  A neurotensin analog blocks cocaine-conditioned place preference and reinstatement , 2016, Behavioural pharmacology.

[18]  S. Rajagopal,et al.  The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors* , 2016, The Journal of Biological Chemistry.

[19]  K. Fuxe,et al.  Neurotensin: A role in substance use disorder? , 2016, Journal of psychopharmacology.

[20]  M. Caron,et al.  A rapid and affordable screening platform for membrane protein trafficking , 2015, BMC Biology.

[21]  H. Dohlman,et al.  The experimental power of FR900359 to study Gq-regulated biological processes , 2015, Nature Communications.

[22]  P. Caboni,et al.  Elevated reinforcing and motivational properties of alcohol at the end of the nocturnal period in sP rats , 2015, Psychopharmacology.

[23]  R. Ghirlando,et al.  G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro , 2015, Biochemistry.

[24]  G. Johnson,et al.  A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data , 2015, Cerebral cortex.

[25]  R. Carelli,et al.  Examination of cocaine dose in a preclinical model of natural reward devaluation by cocaine. , 2015, Behavioural pharmacology.

[26]  Angela D. Wilkins,et al.  Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor , 2015, Proceedings of the National Academy of Sciences.

[27]  L. Hunyady,et al.  Measurement of Inositol 1,4,5-Trisphosphate in Living Cells Using an Improved Set of Resonance Energy Transfer-Based Biosensors , 2015, PloS one.

[28]  T. Daigle,et al.  Targeting β-arrestin2 in the treatment of l-DOPA–induced dyskinesia in Parkinson’s disease , 2015, Proceedings of the National Academy of Sciences.

[29]  L. Watkins,et al.  Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-like receptors and MyD88-dependent signaling , 2015, Brain, Behavior, and Immunity.

[30]  Christina L. Ruby,et al.  Activation of neurotensin receptor type 1 attenuates locomotor activity , 2014, Neuropharmacology.

[31]  M. Caron,et al.  G Protein and β-Arrestin Signaling Bias at the Ghrelin Receptor* , 2014, The Journal of Biological Chemistry.

[32]  S. Laporte,et al.  Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics , 2014, Front. Endocrinol..

[33]  A. Prus,et al.  Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats , 2014, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[34]  R. See,et al.  Dysregulation of Dopamine and Glutamate Release in the Prefrontal Cortex and Nucleus Accumbens Following Methamphetamine Self-Administration and During Reinstatement in Rats , 2014, Neuropsychopharmacology.

[35]  Gernot Riedel,et al.  Mapping Changes in Mouse Brain Metabolism with PET/CT , 2013, The Journal of Nuclear Medicine.

[36]  M. Caron,et al.  Discovery of ML314, a Brain Penetrant Non-Peptidic β-Arrestin Biased Agonist of the Neurotensin NTR1 Receptor. , 2013, ACS medicinal chemistry letters.

[37]  R. Deacon Measuring Motor Coordination in Mice , 2013, Journal of visualized experiments : JoVE.

[38]  K. Fuxe,et al.  Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. , 2013, Biochemical and biophysical research communications.

[39]  C. Baimel,et al.  Methods for Intravenous Self Administration in a Mouse Model , 2012, Journal of visualized experiments : JoVE.

[40]  M. Caron,et al.  Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action , 2012, Proceedings of the National Academy of Sciences.

[41]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[42]  S. Higashiyama,et al.  TGFα shedding assay: an accurate and versatile method for detecting GPCR activation , 2012, Nature Methods.

[43]  F. Holsboer,et al.  Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? , 2012, Nature Reviews Drug Discovery.

[44]  Brian K Shoichet,et al.  Structure-based drug screening for G-protein-coupled receptors. , 2012, Trends in pharmacological sciences.

[45]  M. Mandelkern,et al.  Dysregulation of D2-Mediated Dopamine Transmission in Monkeys after Chronic Escalating Methamphetamine Exposure , 2012, The Journal of Neuroscience.

[46]  P. Sexton,et al.  A Monod-Wyman-Changeux Mechanism Can Explain G Protein-coupled Receptor (GPCR) Allosteric Modulation* , 2011, The Journal of Biological Chemistry.

[47]  R. Lefkowitz,et al.  Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. , 2011, Trends in biochemical sciences.

[48]  M. Preisig,et al.  β-Arrestin2 influences the response to methadone in opioid-dependent patients , 2011, The Pharmacogenomics Journal.

[49]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[50]  Sophie Lancelot,et al.  Small-animal positron emission tomography as a tool for neuropharmacology. , 2010, Trends in pharmacological sciences.

[51]  Y. Xiang Arrestin Orchestrates Crosstalk Between G Protein‐Coupled Receptors to Modulate the Spatiotemporal Activation of ERK MAPK. , 2010, Circulation research.

[52]  Marc G Caron,et al.  Atypical Responsiveness of the Orphan Receptor GPR55 to Cannabinoid Ligands* , 2009, The Journal of Biological Chemistry.

[53]  R. Rodriguiz,et al.  An anxiety-like phenotype in mice selectively bred for aggression , 2009, Behavioural Brain Research.

[54]  F. Hefti Requirements for a lead compound to become a clinical candidate , 2008, BMC Neuroscience.

[55]  N. Volkow,et al.  The effects of cocaine on regional brain glucose metabolism is attenuated in dopamine transporter knockout mice , 2008, Synapse.

[56]  T. Payne,et al.  β-Arrestins 1 and 2 are associated with nicotine dependence in European American smokers , 2008, Molecular Psychiatry.

[57]  Brian B. Avants,et al.  Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study , 2008, NeuroImage.

[58]  G. Fisone,et al.  Adenosine A2A receptors and basal ganglia physiology , 2007, Progress in Neurobiology.

[59]  E. London,et al.  Corticolimbic dysregulation and chronic methamphetamine abuse. , 2007, Addiction.

[60]  R. Risinger,et al.  Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaine-induced reinstatement in rats , 2007, Psychopharmacology.

[61]  M. Iyo,et al.  Possible association of β‐arrestin 2 gene with methamphetamine use disorder, but not schizophrenia , 2007, Genes, brain, and behavior.

[62]  B. Hoffer,et al.  Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus , 2006, Genesis.

[63]  F. St-Gelais,et al.  The role of neurotensin in central nervous system pathophysiology: what is the evidence? , 2006, Journal of psychiatry & neuroscience : JPN.

[64]  Mark Slifstein,et al.  Effect of Spatial Smoothing on t-Maps: Arguments for Going Back from t-Maps to Masked Contrast Images , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  Olivier Lichtarge,et al.  β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor* , 2006, Journal of Biological Chemistry.

[66]  L. Bohn,et al.  Morphine Side Effects in β-Arrestin 2 Knockout Mice , 2005, Journal of Pharmacology and Experimental Therapeutics.

[67]  W. Wetsel,et al.  Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease , 2005, PLoS biology.

[68]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[69]  A. Deutch,et al.  The Neurotensin Agonist PD149163 Increases Fos Expression in the Prefrontal Cortex of the Rat , 2004, Neuropsychopharmacology.

[70]  P. Rompré,et al.  Role of Calcium in Neurotensin-Evoked Enhancement in Firing in Mesencephalic Dopamine Neurons , 2004, The Journal of Neuroscience.

[71]  Sanjiv Sam Gambhir,et al.  AMIDE: a free software tool for multimodality medical image analysis. , 2003, Molecular imaging.

[72]  C. Nemeroff,et al.  Neurotensin and dopamine interactions. , 2001, Pharmacological reviews.

[73]  M. Caron,et al.  Molecular Determinants Underlying the Formation of Stable Intracellular G Protein-coupled Receptor-β-Arrestin Complexes after Receptor Endocytosis* , 2001, The Journal of Biological Chemistry.

[74]  D. Accili,et al.  Neurotensin Gene Expression and Behavioral Responses Following Administration of Psychostimulants and Antipsychotic Drugs in Dopamine D3 Receptor Deficient Mice , 2001, Neuropsychopharmacology.

[75]  Marc G. Caron,et al.  μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence , 2000, Nature.

[76]  M. Caron,et al.  Differential Affinities of Visual Arrestin, βArrestin1, and βArrestin2 for G Protein-coupled Receptors Delineate Two Major Classes of Receptors* , 2000, The Journal of Biological Chemistry.

[77]  R. Gainetdinov,et al.  Enhanced morphine analgesia in mice lacking beta-arrestin 2. , 1999, Science.

[78]  M. Caron,et al.  The G Protein-coupled Receptor Kinase 2 Is a Microtubule-associated Protein Kinase That Phosphorylates Tubulin* , 1998, The Journal of Biological Chemistry.

[79]  L. Cathala,et al.  Neurotensin Inhibition of the Hyperpolarization‐Activated Cation Current (Ih) in the Rat Substantia Nigra Pars Compacta Implicates the Protein Kinase C Pathway , 1997, The Journal of physiology.

[80]  W. Rostène,et al.  Chronic cocaine increases neurotensin gene expression in the shell of the nucleus accumbens and in discrete regions of the striatum. , 1997, Brain research. Molecular brain research.

[81]  J. Benovic,et al.  β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor , 1996, Nature.

[82]  R. Mark Wightman,et al.  Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter , 1996, Nature.

[83]  M. Caron,et al.  Role of β-Arrestin in Mediating Agonist-Promoted G Protein-Coupled Receptor Internalization , 1996, Science.

[84]  Tony Wu,et al.  Neurotensin increases the cationic conductance of rat substantia nigra dopaminergic neurons through the inositol 1,4,5-trisphosphate-calcium pathway , 1995, Brain Research.

[85]  T. Heffner,et al.  Reduced amide bond neurotensin 8-13 mimetics with potent in vivo activity , 1995 .

[86]  Tony Wu,et al.  Protein kinase C mediates neurotensin inhibition of inwardly rectifying potassium currents in rat substantia nigra dopaminergic neurons , 1995, Neuroscience Letters.

[87]  K. Veverka,et al.  The Rat Neurotensin Receptor Expressed in Chinese Hamster Ovary Cells Mediates the Release of Inositol Phosphates , 1992, Journal of neurochemistry.

[88]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[89]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[90]  C. Nemeroff,et al.  Centrally administered neurotensin: activity in the Julou-Courvoisier muscle relaxation test in mice. , 1979, European journal of pharmacology.

[91]  C. Nemeroff,et al.  Hypothermia and intolerance to cold induced by intracisternal administration of the hypothalamic peptide neurotensin , 1976, Nature.

[92]  R. Carraway,et al.  The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. , 1973, The Journal of biological chemistry.

[93]  P. Phillips,et al.  Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. , 2010, Current topics in behavioral neurosciences.

[94]  L. Pieri,et al.  Benzodiazepine antagonist Ro 15-1788: Neurological and behavioral effects , 2004, Psychopharmacology.

[95]  P. Mallorga,et al.  The effects of deleting the mouse neurotensin receptor NTR1 on central and peripheral responses to neurotensin. , 2002, The Journal of pharmacology and experimental therapeutics.

[96]  J. Benovic,et al.  Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. , 1996, Nature.

[97]  A. Beaudet,et al.  FUNCTIONAL AND PHARMACOLOGICAL ASPECTS OF CENTRAL NEUROPEPTIDERGIC TRANSMISSION MEDIATED BY NEUROTENSIN AND NEUROMEDIN N , 1992, Clinical neuropharmacology.

[98]  C. Nemeroff Neurotensin: perchance an endogenous neuroleptic? , 1980, Biological psychiatry.

[99]  HighWire Press,et al.  The journal of pharmacology and experimental therapeutics , 1909 .