Elucidating the Extreme Anisotropy in the J-Integral Value of Commercially Pure Titanium

[1]  Leiming Du,et al.  Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method , 2023, Engineering Fracture Mechanics.

[2]  D. McDowell,et al.  Coarse-grained atomistic modeling of dislocations and generalized crystal plasticity , 2022, Journal of Micromechanics and Molecular Physics.

[3]  S. Suwas,et al.  Fracture mechanism and toughness of a rolled magnesium alloy under dynamic loading , 2021, Acta Materialia.

[4]  V. Sahu,et al.  Effect of Initial Texture on the Evolution of Microstructure and Texture During Rolling of Commercially Pure Titanium at Room and Cryogenic Temperature , 2020, Metallurgical and Materials Transactions A.

[5]  J. Allison,et al.  A quantitative study of stress fields ahead of a slip band blocked by a grain boundary in unalloyed magnesium , 2020, Scientific Reports.

[6]  R. Mccabe,et al.  Deformation twinning and grain partitioning in a hexagonal close-packed magnesium alloy , 2018, Nature Communications.

[7]  S. Suwas,et al.  Effect of notch acuity on the fracture behavior of AZ31 Mg alloy , 2017 .

[8]  Rui Yang,et al.  Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure , 2017 .

[9]  S. Suwas,et al.  Effects of lattice orientation and crack tip constraint on ductile fracture initiation in Mg single crystals , 2017 .

[10]  S. Sinha,et al.  The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium , 2017 .

[11]  S. Joshi,et al.  Three dimensional simulations of texture and triaxiality effects on the plasticity of magnesium alloys , 2017 .

[12]  S. Sinha,et al.  In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing , 2017 .

[13]  W. Skrotzki,et al.  Effect of initial orientation on twinning in commercially pure titanium , 2017 .

[14]  I. Beyerlein,et al.  Grain neighbour effects on twin transmission in hexagonal close-packed materials , 2016, Nature Communications.

[15]  I. Beyerlein,et al.  Effect of local stress fields on twin characteristics in HCP metals , 2016 .

[16]  A. Luo,et al.  In-situ investigation on the microstructure evolution and plasticity of two magnesium alloys during three-point bending , 2015 .

[17]  A. Wilkinson,et al.  On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  S. Suwas,et al.  Role of Tensile Twinning on Fracture Behavior of Magnesium AZ31 Alloy , 2015 .

[19]  R. Lebensohn,et al.  Numerical study of the stress state of a deformation twin in magnesium , 2015 .

[20]  A. Wilkinson,et al.  Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band , 2012 .

[21]  S. Cai,et al.  Evolution of internal strains in a two phase zirconium alloy during cyclic loading , 2011 .

[22]  T. Bieler,et al.  Nucleation of paired twins at grain boundaries in titanium , 2010 .

[23]  T. Bieler,et al.  Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium , 2010 .

[24]  H. Somekawa,et al.  Fracture toughness in Mg–Al–Zn alloy processed by equal-channel-angular extrusion , 2006 .

[25]  H. Somekawa,et al.  Effect of grain refinement on fracture toughness in extruded pure magnesium , 2005 .

[26]  H. Somekawa,et al.  Effect of texture on fracture toughness in extruded AZ31 magnesium alloy , 2005 .

[27]  S. Kalidindi,et al.  Strain hardening of titanium: role of deformation twinning , 2003 .

[28]  S. Kalidindi,et al.  Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium , 2002 .

[29]  M. Morris,et al.  Compatibility of deformation in two-phase Ti-Al alloys: Dependence on microstructure and orientation relationships , 1995 .

[30]  R. H. Stone,et al.  Investigation of the fracture mechanism of Ti-5AI-2.5Sn at cryogenic temperatures , 1978 .

[31]  Shaofan Li,et al.  Geometrically-Compatible Dislocation Pattern and Modeling of Crystal Plasticity in Body-Centered Cubic (BCC) Crystal at Micron Scale , 2021, Computer Modeling in Engineering & Sciences.

[32]  D. Tromans ELASTIC ANISOTROPY OF HCP METAL CRYSTALS AND POLYCRYSTALS , 2011 .

[33]  A. Pilchak,et al.  Crystallography of Fluted Fracture in Near-α Titanium Alloys , 2009 .

[34]  F. Ellyin,et al.  On the size of plastic zone ahead of crack tip , 1986 .

[35]  R. H. Van Stone,et al.  Microstructural aspects of fracture by dimpled rupture , 1985 .