Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility

[1] Global Navigation Satellite System–based radio occultation (RO) measurements promise to become a valuable observational basis for climate research, numerical weather prediction, and atmospheric process studies, thanks to their unique combination of global coverage, high accuracy and vertical resolution, and long-term stability. Concerning the quality of the RO-derived atmospheric profiles, performance simulation studies and first data analysis results from the current CHAMP satellite mission are encouraging but also reveal weaknesses of present RO retrieval chains at high altitudes (above 30 km). This study aims at providing, first, understanding of these weaknesses and, second, mitigation by an advanced retrieval scheme. We first evaluated present state-of-the-art high-altitude RO retrieval algorithms. We found clear superiority for using statistical optimization involving background information over using exponential extrapolation and a sensitivity of RO retrieval products to biases in background information calling for sensible bias mitigation. Exploiting these findings, an advanced high-altitude retrieval scheme is presented, which focuses on minimizing residual retrieval biases in the upper stratosphere and thereby on optimizing the climate monitoring utility of retrieved profiles. Applied to a large ensemble of simulated occultation events, the advanced scheme proved to be effective. The scheme is currently under evaluation with real data from the CHAMP mission. It will then serve as part of a processing chain generating RO-based global climatologies of refractivity, geopotential height, temperature, and humidity based on RO data from CHAMP, SAC-C, GRACE and other future satellites carrying RO instruments.

[1]  Lennart Bengtsson,et al.  Transient Climate Change Simulations with a Coupled Atmosphere–Ocean GCM Including the Tropospheric Sulfur Cycle , 1999 .

[2]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[3]  Lennart Bengtsson,et al.  SPACEBORNE CLIMATE CHANGE MONITORING BY GNSS OCCULTATION SENSORS , 2000 .

[4]  Gottfried Kirchengast,et al.  Ensemble-Based Analysis of Errors in Atmospheric Profiles Retrieved from GNSS Occultation Data , 2004 .

[5]  S. Sokolovskiy Effect of superrefraction on inversions of radio occultation signals in the lower troposphere , 2003 .

[6]  Gottfried Kirchengast,et al.  One-dimensional variational (1-D Var) retrieval of temperature, water vapor, and a reference pressure from radio occultation measurements : A sensitivity analysis , 2003 .

[7]  Lennart Bengtsson,et al.  Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity , 1996 .

[8]  S. B. Healy,et al.  Smoothing radio occultation bending angles above 40 km , 2001 .

[9]  J. Barnett,et al.  Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km , 1990 .

[10]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[11]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[12]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[13]  Gottfried Kirchengast,et al.  Tropospheric water vapor imaging by combination of ground-based and spaceborne GNSS sounding data , 2001 .

[14]  M. E. Gorbunov Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere , 2002 .

[15]  L. Bengtsson,et al.  Space refractive tomography of the atmosphere: modeling of direct and inverse problems , 1996 .

[16]  Markus J. Rieder,et al.  Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data , 2001 .

[17]  Gerald R. North,et al.  The Application of COSMIC Data to Global Change Research , 2000 .

[18]  J. R. Eyre,et al.  A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure , 2000, physics/0003010.

[19]  Gottfried Kirchengast,et al.  GPS/GLONASS sensing of the neutral atmosphere: Model‐independent correction of ionospheric influences , 1996 .

[20]  M. E. Gorbunov,et al.  Algorithms of inversion of Microlab-1 satellite data including effects of multipath propagation , 1998 .

[21]  M. E. Gorbunov,et al.  Ionospheric correction and statistical optimization of radio occultation data , 2002 .

[22]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[23]  Christian Rocken,et al.  COSMIC System Description , 2000 .

[24]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[25]  Rolf König,et al.  Atmosphere sounding by GPS radio occultation: First results from CHAMP , 2001 .

[26]  James J. Spilker,et al.  GPS Signal Structure and Performance Characteristics , 1978 .

[27]  Sergey Sokolovskiy,et al.  Statistical optimization approach for GPS/MET data inversion [presentation] , 1996 .

[28]  Franz Zangerl,et al.  Spaceborne GNSS Radio Occultation Instrumentation for Operational Applications , 2000 .

[29]  Thomas P. Yunck,et al.  A History of GPS Sounding , 2000 .

[30]  J. Wickert,et al.  Atmospheric sounding by GNSS radio occultation : An analysis of the negative refractivity bias using CHAMP observations , 2003 .

[31]  J. Wickert,et al.  Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations , 2004 .

[32]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[33]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[34]  Gottfried Kirchengast,et al.  Global Climate Monitoring based on CHAMP/GPS Radio Occultation Data , 2003 .

[35]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[36]  Stig Syndergaard,et al.  On the ionosphere calibration in GPS radio occultation measurements , 2000 .

[37]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[38]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[39]  Inversion of the Plasma Signal in GNSS Occultations — Simulation Studies and Sample Results , 2013 .

[40]  Philippe Keckhut,et al.  The SPARC Intercomparison of Middle-Atmosphere Climatologies , 2004, Journal of Climate.

[41]  T. P. Yunck,et al.  The role of GPS in precise Earth observation , 1988, IEEE PLANS '88.,Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'..

[42]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[43]  Christian Rocken,et al.  Applications of COSMIC to Meteorology and Climate , 2000 .

[44]  S. Ungar,et al.  Sensing the earth's atmosphere with occultation satellites , 1969 .

[45]  V. V. Vorob’ev,et al.  Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system , 1994 .

[46]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[47]  Anthony J. Mannucci,et al.  Lower troposphere refractivity bias in GPS occultation retrievals , 2003 .

[48]  Frederick F. Fischbach,et al.  A satellite method for pressure and temperature below 24 km. , 1965 .

[49]  Gottfried Kirchengast,et al.  Easy to use Global and Regional Ionospheric Models — A Report on Approaches Used in Graz , 2013 .

[50]  Y. Menard,et al.  GRAS – Metop ’ s GPS-Based Atmospheric , 2000 .

[51]  K. Hocke,et al.  Inversion of GPS meteorology data , 1997 .

[52]  Lennart Bengtsson,et al.  GNSS Occultation Sounding for Climate Monitoring , 2001 .