Active dielectric metasurface based on phase‐change medium

We propose all-dielectric metasurfaces that can be actively re-configured using the phase-change material Ge2Sb2Te5 (GST) alloy. With selectively controlled phase transitions on the composing GST elements, metasurfaces can be tailored to exhibit varied functionalities. Using phase-change GST rod as the basic building block, we have modelled metamolecules with tunable optical response when phase change occurs on select constituent GST rods. Tunable gradient metasurfaces can be realized with variable supercell period consisting of different patterns of the GST rods in their amorphous and crystalline states. Simulation results indicate a range of functions can be delivered, including multilevel signal modulating, near-field coupling of GST rods, and anomalous reflection angle controlling. This work opens up a new space in exploring active meta-devices with broader applications that cannot be achieved in their passive counterparts with permanent properties once fabricated.

[1]  Peining Li,et al.  Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. , 2016, Nature materials.

[2]  S. Maier,et al.  Nanoplasmonics: Engineering and observation of localized plasmon modes , 2012 .

[3]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[4]  Masud Mansuripur,et al.  Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. , 2010, Optics express.

[5]  Nikolay I. Zheludev,et al.  Coherent excitation-selective spectroscopy of multipole resonances , 2016 .

[6]  H. Giessen,et al.  Microcavity plasmonics: strong coupling of photonic cavities and plasmons , 2013 .

[7]  B. Kooi,et al.  Nanoscale Electrolytic Switching in Phase‐Change Chalcogenide Films , 2007 .

[8]  M. Terao,et al.  Electrical Phase-Change Memory: Fundamentals and State of the Art , 2009 .

[9]  Andrey E. Miroshnichenko,et al.  Generalized Brewster effect in dielectric metasurfaces , 2015, Nature Communications.

[10]  S. Maier,et al.  Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. , 2013, Optics express.

[11]  Masud Mansuripur,et al.  Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. , 2011, Optics express.

[12]  W. Liu,et al.  Toroidal dipole‐induced transparency in core–shell nanoparticles , 2014, Laser & Photonics Reviews.

[13]  Imaging of Digital Versatile Rewritable Disc using the Reflection-Mode Scattering-Type Scanning Near-Field Optical Microscope , 2001 .

[14]  Sailing He,et al.  Ultrabroadband strong light absorption based on thin multilayered metamaterials , 2013, 1306.3289.

[15]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[16]  V. Shalaev Optical negative-index metamaterials , 2007 .

[17]  Zach DeVito,et al.  Opt , 2017 .

[18]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[19]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[20]  D. Faccio,et al.  Enhanced nonlinear effects in pulse propagation through epsilon‐near‐zero media , 2016 .

[21]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[22]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[23]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[24]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[25]  Jacob B Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .

[26]  Din Ping Tsai,et al.  Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks. , 2006, Optics express.

[27]  Gorden Videen,et al.  Effective medium theories for irregular fluffy structures: aggregation of small particles. , 2007, Applied optics.

[28]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[29]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[30]  G. Guo,et al.  Coherent perfect nanoabsorbers based on negative refraction. , 2012, Optics express.

[31]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[32]  G. Agarwal,et al.  Effective-medium theory of a heterogeneous medium with individual grains having a nonlocal dielectric function , 1984 .

[33]  Maciej Klemm,et al.  Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects. , 2014, Optics express.

[34]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[35]  Craig F. Bohren,et al.  Absorption and Scattering by an Arbitrary Particle , 2007 .

[36]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[37]  R. Thielsch,et al.  Optical and Structural Properties of Nanocrystalline ZnS-SiO2 Composite Films , 1996 .

[38]  X Zhang,et al.  Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. , 2010, Optics express.

[39]  S. Raoux Phase Change Materials , 2009 .

[40]  Y. Kivshar,et al.  Circular dichroism induced by Fano resonances in planar chiral oligomers , 2014, 1412.1120.

[41]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[42]  Eric Plum,et al.  Giant nonlinear optical activity in a plasmonic metamaterial , 2012, Nature Communications.

[43]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[44]  Jacob B. Khurgin,et al.  Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes , 2014, Nature Photonics.

[45]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[46]  Jinghua Teng,et al.  Silicon multi‐meta‐holograms for the broadband visible light , 2016 .

[47]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[48]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[49]  Din Ping Tsai,et al.  Fabrication of multilayer metamaterials by femtosecond laser‐induced forward‐transfer technique , 2012 .

[50]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[51]  Ai Qun Liu,et al.  Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer. , 2011, Optics express.

[52]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[53]  Andrew G. Glen,et al.  APPL , 2001 .

[54]  Yongfeng Li,et al.  High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces , 2012 .

[55]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[56]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[57]  Mohsen Rahmani,et al.  Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. , 2012, Nano letters.

[58]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[59]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[60]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[61]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[62]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[63]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[64]  Tae-Yon Lee,et al.  Optical properties of pseudobinary GeTe, Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 , GeSb 4 Te 7 , and Sb 2 Te 3 from ellipsometry and density functional theory , 2009 .

[65]  P. Nordlander,et al.  Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. , 2012, Nano letters.

[66]  Otto L Muskens,et al.  Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces. , 2014, ACS nano.

[67]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[68]  Generation of vectorial optical fields with slot-antenna-based metasurface. , 2015, Optics letters.

[69]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.