Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis

[1]  P. Carmeliet,et al.  How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. , 2017, Developmental biology.

[2]  M. Snuderl,et al.  Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumors , 2018, Nature Cell Biology.

[3]  M. Protopopova,et al.  An inhibitor of oxidative phosphorylation exploits cancer vulnerability , 2018, Nature Medicine.

[4]  M. V. Vander Heiden,et al.  Aspartate is an endogenous metabolic limitation for tumour growth , 2018, Nature Cell Biology.

[5]  Darryl J. Pappin,et al.  Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells , 2018, Cell reports.

[6]  P. Frenette,et al.  Adrenergic nerves activate an angio-metabolic switch in prostate cancer , 2017, Science.

[7]  Francisco J. Sánchez-Rivera,et al.  Keap1 loss promotes Kras-driven lung cancer and results in a dependence on glutaminolysis , 2017, Nature Medicine.

[8]  N. Yuldasheva,et al.  Role of glutamine and interlinked asparagine metabolism in vessel formation , 2017, The EMBO journal.

[9]  Cholsoon Jang,et al.  Glutamine fuels proliferation but not migration of endothelial cells , 2017, The EMBO journal.

[10]  S. Weinberg,et al.  The mitochondrial respiratory chain is essential for haematopoietic stem cell function , 2017, Nature Cell Biology.

[11]  P. Carmeliet,et al.  FGF-dependent metabolic control of vascular development , 2017, Nature.

[12]  David N. Thibodeaux,et al.  Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter-1 protein , 2017, Nature Communications.

[13]  A. Luttun,et al.  The role of fatty acid β-oxidation in lymphangiogenesis , 2016, Nature.

[14]  P. Carmeliet,et al.  Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. , 2016, Cancer cell.

[15]  E. Lengyel,et al.  Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. , 2016, Cell metabolism.

[16]  B. Bryan,et al.  Differential Expression of Angiogenic Gene Networks during Post-natal Lung Alveolarization , 2016 .

[17]  S. Dimmeler,et al.  JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[18]  Navdeep S. Chandel,et al.  Fundamentals of cancer metabolism , 2016, Science Advances.

[19]  V. Mootha,et al.  Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio , 2016, Science.

[20]  R. Deberardinis,et al.  TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. , 2016, Molecular cell.

[21]  P. Carmeliet,et al.  FOXO1 couples metabolic activity and growth state in the vascular endothelium , 2015, Nature.

[22]  Junhao Hu,et al.  The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells , 2015, Cell reports.

[23]  M. V. Heiden,et al.  Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells , 2015, Cell.

[24]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[25]  P. Carmeliet,et al.  Fatty acid carbon is essential for dNTP synthesis in endothelial cells , 2015, Nature.

[26]  David A. Eccles,et al.  Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. , 2015, Cell metabolism.

[27]  S. Weinberg,et al.  Targeting mitochondria metabolism for cancer therapy. , 2015, Nature chemical biology.

[28]  N. Kelleher,et al.  Site‐specific human histone H3 methylation stability: fast K4me3 turnover , 2014, Proteomics.

[29]  Andrea Glasauer,et al.  Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis , 2014, eLife.

[30]  D. Sabatini,et al.  Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides , 2014, Nature.

[31]  P. Carmeliet,et al.  Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. , 2014, Cell metabolism.

[32]  J. Auwerx,et al.  The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease , 2014, Journal of Experimental Biology.

[33]  P. Carmeliet,et al.  Role of PFKFB3-Driven Glycolysis in Vessel Sprouting , 2013, Cell.

[34]  N. Kelleher,et al.  Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites , 2013, Nature Communications.

[35]  Liu Wei,et al.  LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. , 2013, Cancer cell.

[36]  H. Jacobs,et al.  Glucose Modulates Respiratory Complex I Activity in Response to Acute Mitochondrial Dysfunction , 2012, The Journal of Biological Chemistry.

[37]  Hui Yang,et al.  Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. , 2012, Genes & development.

[38]  J. Plutzky,et al.  Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway , 2012, Angiogenesis.

[39]  M. Sahin,et al.  Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway , 2012, Angiogenesis.

[40]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[41]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[42]  R. Adams,et al.  Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice , 2010, Nature Protocols.

[43]  Abhijit Bhat,et al.  Targeting the ANGPT–TIE2 pathway in malignancy , 2010, Nature Reviews Cancer.

[44]  A. Al-Mehdi,et al.  Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. , 2010, American journal of physiology. Lung cellular and molecular physiology.

[45]  W. Wheaton,et al.  Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity , 2010, Proceedings of the National Academy of Sciences.

[46]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .

[47]  R. Wanders,et al.  A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation , 2010, Journal of Inherited Metabolic Disease.

[48]  T. Ince,et al.  Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  Marcus Fruttiger,et al.  The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis , 2009, Cell.

[50]  Peter Carmeliet,et al.  Mechanisms of Vessel Branching: Filopodia on Endothelial Tip Cells Lead the Way , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[51]  J. Enríquez,et al.  Restoration of electron transport without proton pumping in mammalian mitochondria , 2008, Proceedings of the National Academy of Sciences.

[52]  W. Fu,et al.  Enhancement of Glucose Transporter Expression of Brain Endothelial Cells by Vascular Endothelial Growth Factor Derived from Glioma Exposed to Hypoxia , 2008, Molecular Pharmacology.

[53]  Scott A. Busby,et al.  Chemical derivatization of histones for facilitated analysis by mass spectrometry , 2007, Nature Protocols.

[54]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[55]  H. Jacobs,et al.  Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration , 2006, EMBO reports.

[56]  J. Warner,et al.  Economics of ribosome biosynthesis. , 2001, Cold Spring Harbor symposia on quantitative biology.

[57]  M. King,et al.  Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. , 1989, Science.