Spin nonclassicality via variance

Although variance, as one of the most fundamental and ubiquitous quantities in quantifying uncertainty, has been widely used in both classical and quantum physics, there are still new applications awaiting exploration. In this work, by interchanging the roles of the state variable and the observable variable, i.e., by formally regarding any state as an observable (which is rational because any state is a priori a Hermitian operator ) and considering the average variance of this state (now in the position of an observable ) in all spin coherent states, we introduce a quantifier of spin nonclassicality with respect to a resolution of identity induced by spin coherent states. This quantifier is easy to compute and it admits various operational interpretations, such as the purity deficit, the Tsallis 2-entropy deficit, and the squared norm deficit between the Wigner function and the Husimi function. We reveal several intuitive properties of this quantifier, connect it to the phase-space distribution uncertainty, and illustrate it with some prototypical examples. Various extensions are further indicated.

[1]  D. Braun,et al.  Classicality of spin states , 2008, 0805.2592.

[2]  S. Luo,et al.  Quantum coherence versus quantum uncertainty , 2017 .

[3]  B. Amaral,et al.  Roughness as classicality indicator of a quantum state , 2018, 1802.02880.

[4]  R. Gilmore GEOMETRY OF SYMMETRIZED STATES. , 1972 .

[5]  M. Ku's,et al.  On detection of quasiclassical states , 2011, 1111.1005.

[6]  J. M. Radcliffe Some properties of coherent spin states , 1971 .

[7]  W. Vogel,et al.  Quantification of Nonclassicality , 2009, 0904.3390.

[8]  S. Luo,et al.  Coherence and complementarity in state-channel interaction , 2018, Physical Review A.

[9]  K. Nemoto,et al.  Superpositions of SU(3) coherent states via a nonlinear evolution , 2001, quant-ph/0210067.

[10]  J. Sperling,et al.  Resources for Quantum Technology: Nonclassicality versus Entanglement , 2014 .

[11]  M. Hillery,et al.  Nonclassical distance in quantum optics. , 1987, Physical review. A, General physics.

[12]  S. Luo,et al.  Quantum states as observables: Their variance and nonclassicality , 2020, Physical Review A.

[13]  B. Baseia,et al.  On the measure of nonclassicality of field states , 2003 .

[14]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[15]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[16]  S. Luo,et al.  Quantumness of Bosonic Field States , 2020 .

[17]  J. Eisert,et al.  Directly estimating nonclassicality. , 2010, Physical review letters.

[18]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[19]  D. Braun,et al.  Quantifying quantumness and the quest for Queens of Quantum , 2010, 1002.2158.

[20]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[21]  Paulina Marian,et al.  Quantifying nonclassicality of one-mode Gaussian states of the radiation field. , 2002, Physical review letters.

[22]  P. Atkins,et al.  Angular momentum coherent states , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Quantum Chernoff bound as a measure of nonclassicality for one-mode Gaussian states , 2009, 0806.1892.

[24]  Kodi Husimi,et al.  Some Formal Properties of the Density Matrix , 1940 .

[25]  Jayne Thompson,et al.  Operational Resource Theory of Continuous-Variable Nonclassicality , 2018, Physical Review X.

[26]  D. Braun,et al.  Quantumness of spin-1 states , 2015, 1510.07848.

[27]  Information-theoretic approach to atomic spin nonclassicality , 2019 .

[28]  V. Man'ko,et al.  Hilbert-Schmidt distance and non-classicality of states in quantum optics , 2000 .

[29]  Lütkenhaus,et al.  Nonclassical effects in phase space. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[31]  S. Luo,et al.  Quantum versus classical uncertainty , 2005 .

[32]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[33]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[34]  Lee,et al.  Measure of the nonclassicality of nonclassical states. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[35]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[36]  Soumyakanti Bose,et al.  Wehrl-entropy-based quantification of nonclassicality for single-mode quantum optical states , 2016, Journal of Physics A: Mathematical and Theoretical.

[37]  S. Luo,et al.  Quantifying nonclassicality via Wigner-Yanase skew information , 2019, Physical Review A.

[38]  Kae Nemoto,et al.  Wigner Functions for Arbitrary Quantum Systems. , 2016, Physical review letters.

[39]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Vladimir I. Man’ko,et al.  Theory of nonclassical states of light , 2003 .

[41]  S. Luo,et al.  Detecting nonclassicality of light via Lieb's concavity , 2019, Physics Letters A.

[42]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .