Computing real witness points of positive dimensional polynomial systems

Abstract We consider a critical point method for finding certain solution (witness) points on real solution components of real polynomial systems of equations. The method finds points that are critical points of the distance from a plane to the component with the requirement that certain regularity conditions are satisfied. In this paper we analyze the numerical stability and complexity of the method. We aim to find at least one well conditioned witness point on each connected component by using perturbation, path tracking and projection techniques. An optimal-direction strategy and an adaptive step size control strategy for path following on high dimensional components are given.

[1]  Lihong Zhi,et al.  Computing real solutions of polynomial systems via low-rank moment matrix completion , 2012, ISSAC.

[2]  Nicolai Vorobjov,et al.  Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.

[3]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[4]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[5]  Éric Schost,et al.  A Baby Steps/Giant Steps Probabilistic Algorithm for Computing Roadmaps in Smooth Bounded Real Hypersurface , 2011, Discret. Comput. Geom..

[6]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[7]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[8]  Zhengfeng Yang,et al.  Verified error bounds for real solutions of positive-dimensional polynomial systems , 2013, ISSAC '13.

[9]  Ye Lu Finding all real solutions of polynomial systems , 2006 .

[10]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[11]  Éric Schost,et al.  A Baby Step–Giant Step Roadmap Algorithm for General Algebraic Sets , 2012, Found. Comput. Math..

[12]  Bernard Mourrain,et al.  The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.

[13]  Robert M. Corless,et al.  Numerical solutions of index-1 differential algebraic equations can be computed in polynomial time , 2006, Numerical Algorithms.

[14]  Éric Schost,et al.  A Nearly Optimal Algorithm for Deciding Connectivity Queries in Smooth and Bounded Real Algebraic Sets , 2013, J. ACM.

[15]  Elias P. Tsigaridas,et al.  On the Minimum of a Polynomial Function on a Basic Closed Semialgebraic Set and Applications , 2013, SIAM J. Optim..

[16]  Wenyuan Wu,et al.  Finding points on real solution components and applications to differential polynomial systems , 2013, ISSAC '13.

[17]  Monique Laurent,et al.  A prolongation-projection algorithm for computing the finite real variety of an ideal , 2008, Theor. Comput. Sci..

[18]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[19]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[20]  Jean-Pierre Dedieu Estimations for the Separation Number of a Polynomial System , 1997, J. Symb. Comput..

[21]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[22]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[23]  Jonathan D. Hauenstein,et al.  Cell decomposition of almost smooth real algebraic surfaces , 2013, Numerical Algorithms.

[24]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[25]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[26]  Charles W. Wampler,et al.  Finding All Real Points of a Complex Curve , 2006 .

[27]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[28]  J. Yorke,et al.  The cheater's homotopy: an efficient procedure for solving systems of polynomial equations , 1989 .

[29]  J. Hauenstein Numerically Computing Real Points on Algebraic Sets , 2011, Acta Applicandae Mathematicae.

[30]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[31]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[32]  S. Basu,et al.  Algorithms in semi-algebraic geometry , 1996 .

[33]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[34]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[35]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[36]  Marc Giusti,et al.  Point searching in real singularcomplete intersection varieties: algorithms of intrinsic complexity , 2013, Math. Comput..

[37]  Mohab Safey El Din,et al.  Strong Bi-homogeneous Bézout's Theorem and degree bounds for algebraic optimization , 2004 .