On the mixed formulation of a 9-node Lagrange shell element

Abstract A 9-node Lagrange shell element is examined using a strain-based mixed method. Starting from a modified Hellinger-Reissner principle, finite element equations are derived by assuming both the displacement and strain fields independently. The strain functions are carefully chosen in conjunction with several considerations discussed in the paper. The resulting element is free from shear and membrane locking, hence it can be used for modeling of either thin or moderately thick shells. All kinematic deformation modes have been systematically suppressed. Further, a Jacobian transformation for the strain functions is employed between the natural and lamina coordinates to reduce the element sensitivity to geometric distortions. Six examples are given to illustrate the numerical performance of the proposed element.

[1]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .

[2]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[3]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .

[4]  T. Belytschko,et al.  Membrane Locking and Reduced Integration for Curved Elements , 1982 .

[5]  K. S. Lo,et al.  Computer analysis in cylindrical shells , 1964 .

[6]  H. Parisch,et al.  Geometrical nonlinear analysis of shells , 1978 .

[7]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[8]  T. Y. Chang,et al.  Large deflection and post-buckling analysis of shell structures , 1982 .

[9]  J. J. Rhiu,et al.  A new efficient mixed formulation for thin shell finite element models , 1987 .

[10]  Atef F. Saleeb,et al.  On the hybrid-mixed formulation of C 0 curved beam elements , 1987 .

[11]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[12]  K. Bathe,et al.  A FORMULATION OF GENERAL SHELL OF TENSORIAL COMPONENTSt ELEMENTS-THE USE OF MIXED INTERPOLATION , 1986 .

[13]  K. Sawamiphakdi,et al.  Large deformation analysis of laminated shells by ftnife element method , 1981 .

[14]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[15]  S. W. Lee,et al.  Study of a nine-node mixed formulation finite element for thin plates and shells , 1985 .

[16]  Ted Belytschko,et al.  A consistent control of spurious singular modes in the 9-node Lagrange element for the laplace and mindlin plate equations , 1984 .

[17]  L. Morley Skew plates and structures , 1963 .

[18]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis (2nd Edition) , 1984 .

[19]  Atef F. Saleeb,et al.  A mixed formulation of C0‐linear triangular plate/shell element—the role of edge shear constraints , 1988 .

[20]  T. Belytschko,et al.  Shear and membrane locking in curved C0 elements , 1983 .

[21]  Thomas J. R. Hughes,et al.  An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element , 1983 .

[22]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[23]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[24]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[25]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[26]  Ted Belytschko,et al.  Implementation and application of a 9-node Lagrange shell element with spurious mode control , 1985 .

[27]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[28]  Atef F. Saleeb,et al.  A quadrilateral shell element using a mixed formulation , 1987 .

[29]  E. Hinton,et al.  A nine node Lagrangian Mindlin plate element with enhanced shear interpolation , 1984 .

[30]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[31]  E. Hinton,et al.  A comparison of lagrangian and serendipity mindlin plate elements for free vibration analysis , 1979 .

[32]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[33]  Isaac Fried,et al.  Shear in C0 and C1 ending finite elements , 1973 .

[34]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[35]  B. Irons,et al.  Techniques of Finite Elements , 1979 .

[36]  G R Heppler,et al.  A Mindlin element for thick and deep shells , 1986 .