Extraction and Segmentation of Structures in Image Sequences

The analysis of imaged anatomical or biological structures and of their dynamics is an important task in terms of application and therefore of diagnostics. Such an analysis involves in the first place the extraction of these structures from the acquired images according to a given modality, which corresponds, in image processing terminology, to a segmentation phase. Segmentation methods are conventionally qualified as “region-based approaches” or “contour-based approaches”. The two types of information – image properties and a priori constraints – must be integrated into a common formalism, itself numerically implemented as an algorithm. This chapter details more particularly two deformable model approaches: deformable templates (DTs) and variational active contours. It presents the implementation of variational active contour methods in cardiac imaging, describing the choices carried out. The chapter focuses on two examples of active contours, applied to the segmentation of cardiac ultrasound images in 2D and 3D ultrasound echography

[1]  Patrick Clarysse,et al.  Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. , 2012, Medical physics.

[2]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[4]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[5]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[6]  Grégoire Malandain,et al.  Outils de contourage, utilisation et construction d’atlas anatomiques : exemples des cancers de la tête et du cou , 2010 .

[7]  Hemant D. Tagare,et al.  Tunneling descent for m.a.p. active contours in ultrasound segmentation , 2007, Medical Image Anal..

[8]  Christopher V. Alvino,et al.  The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph , 2009, IEEE Transactions on Image Processing.

[9]  Jacques-Olivier Lachaud,et al.  Deformable model with a complexity independent from image resolution , 2005, Comput. Vis. Image Underst..

[10]  Anthony J. Yezzi,et al.  Fast incorporation of optical flow into active polygons , 2005, IEEE Transactions on Image Processing.

[11]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[12]  Kecheng Liu,et al.  Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review , 2002, IEEE Transactions on Information Technology in Biomedicine.

[13]  Frédéric Galland,et al.  Minimal Stochastic Complexity Image Partitioning With Unknown Noise Model , 2006, IEEE Transactions on Image Processing.

[14]  Daniel Rueckert,et al.  Shape-based segmentation and tracking in 4D cardiac MR images , 1997, CVRMed.

[15]  Nico de Jong,et al.  Left ventricular border tracking using cardiac motion models and optical flow. , 2011, Ultrasound in medicine & biology.

[16]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Michel Barlaud,et al.  DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation , 2002, International Journal of Computer Vision.

[18]  Xavier Bresson,et al.  Completely Convex Formulation of the Chan-Vese Image Segmentation Model , 2012, International Journal of Computer Vision.

[19]  Abderrahim Elmoataz,et al.  Nonlocal PDEs-Based Morphology on Weighted Graphs for Image and Data Processing , 2011, IEEE Transactions on Image Processing.

[20]  Elsa D. Angelini,et al.  Real-time segmentation by Active Geometric Functions , 2010, Comput. Methods Programs Biomed..

[21]  Stanley Osher,et al.  Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal , 2000, SIAM J. Sci. Comput..

[22]  Dan W Rettmann,et al.  Accurate and Objective Infarct Sizing by Contrast-enhanced Magnetic Resonance Imaging in a Canine Myocardial Infarction Model , 2022 .

[23]  Nikos Paragios,et al.  Gradient vector flow fast geometric active contours , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Michael G. Strintzis,et al.  Tracking the left ventricle in echocardiographic images by learning heart dynamics , 1999, IEEE Transactions on Medical Imaging.

[26]  Andrew Blake,et al.  Evaluating a robust contour tracker on echocardiographic sequences , 1999, Medical Image Anal..

[27]  Frédéric Galland,et al.  Nonparametric statistical snake based on the minimum stochastic complexity , 2006, IEEE Transactions on Image Processing.

[28]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[29]  Robert Pless,et al.  Segmenting Cardiopulmonary Images Using Manifold Learning with Level Sets , 2005, CVBIA.

[30]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[31]  P. Kellman,et al.  Quantitative myocardial infarction on delayed enhancement MRI. Part I: Animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm , 2006, Journal of magnetic resonance imaging : JMRI.

[32]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[33]  Olivier Basset,et al.  Using a geometric formulation of annular-like shape priors for constraining variational level-sets , 2010, 2010 IEEE International Conference on Image Processing.

[34]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[35]  A. Yuille Deformable Templates for Face Recognition , 1991, Journal of Cognitive Neuroscience.

[36]  Yunmei Chen,et al.  Using Prior Shapes in Geometric Active Contours in a Variational Framework , 2002, International Journal of Computer Vision.

[37]  Dorin Comaniciu,et al.  Robust real-time myocardial border tracking for echocardiography: an information fusion approach , 2004, IEEE Transactions on Medical Imaging.

[38]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[39]  J. Alison Noble,et al.  Ultrasound image segmentation: a survey , 2006, IEEE Transactions on Medical Imaging.

[40]  C. Lamberti,et al.  Maximum likelihood segmentation of ultrasound images with Rayleigh distribution , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  Paul F. Whelan,et al.  Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge , 2006, Comput. Medical Imaging Graph..

[42]  Alban Redheuil,et al.  Robust assessment of the transmural extent of myocardial infarction in late gadolinium-enhanced MRI studies using appropriate angular and circumferential subdivision of the myocardium , 2008, European Radiology.

[43]  Denis Friboulet,et al.  Quantification of left ventricular volume and global function using a fast automated segmentation tool: validation in a clinical setting , 2012, The International Journal of Cardiovascular Imaging.

[44]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[45]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[46]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[48]  Yongmin Kim,et al.  Parametric shape modeling using deformable superellipses for prostate segmentation , 2004, IEEE Transactions on Medical Imaging.

[49]  J. Alison Noble,et al.  2D+T acoustic boundary detection in echocardiography , 2000, Medical Image Anal..

[50]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[51]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[52]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[53]  Denis Friboulet,et al.  Fast and fully automatic 3-d echocardiographic segmentation using B-spline explicit active surfaces: feasibility study and validation in a clinical setting. , 2013, Ultrasound in medicine & biology.

[54]  Stanley Osher,et al.  REVIEW ARTICLE: Level Set Methods and Their Applications in Image Science , 2003 .

[55]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.

[56]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[57]  Heinz-Otto Peitgen,et al.  Mixture-Model-Based Segmentation of Myocardial Delayed Enhancement MRI , 2012, STACOM.

[58]  John W. Fisher,et al.  Submitted to Ieee Transactions on Image Processing a Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution , 2022 .

[59]  Rachid Deriche,et al.  Implicit Active Shape Models for 3D Segmentation in MR Imaging , 2004, MICCAI.

[60]  Michael Unser,et al.  Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution , 2009, IEEE Transactions on Image Processing.

[61]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[62]  Mahmoud R. El-Sakka,et al.  Optical Flow Active Contours with Primitive Shape Priors for Echocardiography , 2010, EURASIP J. Adv. Signal Process..

[63]  Rachid Deriche,et al.  Geodesic active regions and level set methods for motion estimation and tracking , 2005, Comput. Vis. Image Underst..

[64]  Denis Friboulet,et al.  A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography , 2006, Medical Image Anal..

[65]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[66]  Alistair A. Young,et al.  Extraction and quantification of left ventricular deformation modes , 2004, IEEE Transactions on Biomedical Engineering.

[67]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[68]  Alessandro Pingitore,et al.  A fast and effective method to assess myocardial necrosis by means of contrast magnetic resonance imaging. , 2005, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[69]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Milan Sonka,et al.  Automatic segmentation of echocardiographic sequences by active appearance motion models , 2002, IEEE Transactions on Medical Imaging.

[71]  Patrick Clarysse,et al.  A dynamic elastic model for segmentation and tracking of the heart in MR image sequences , 2010, Medical Image Anal..

[72]  M. Gage,et al.  The Curve Shortening Flow , 1987 .

[73]  Olivier Bernard,et al.  Myocardial Motion Estimation From Medical Images Using the Monogenic Signal , 2013, IEEE Transactions on Image Processing.

[74]  Patrick Clarysse,et al.  Incorporating Low-Level Constraints for the Retrieval of Personalised Heart Models from Dynamic MRI , 2010, STACOM/CESC.

[75]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[76]  Xavier Bresson,et al.  A Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven by the Mumford-Shah Functional , 2006, International Journal of Computer Vision.

[77]  Olivier D. Faugeras,et al.  Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? , 2003, SIAM J. Appl. Math..

[78]  Daniel Cremers,et al.  Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling , 2003, Scale-Space.

[79]  Denis Friboulet,et al.  Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set , 2012, Medical Image Anal..

[80]  Nicolas Papadakis,et al.  A Variational Technique for Time Consistent Tracking of Curves and Motion , 2008, Journal of Mathematical Imaging and Vision.

[81]  Piotr J. Slomka,et al.  Heart chambers and whole heart segmentation techniques: review , 2012, J. Electronic Imaging.

[82]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Denis Friboulet,et al.  Compactly Supported Radial Basis Functions Based Collocation Method for Level-Set Evolution in Image Segmentation , 2007, IEEE Transactions on Image Processing.

[84]  PAUL D. SAMPSON,et al.  Fitting conic sections to "very scattered" data: An iterative refinement of the bookstein algorithm , 1982, Comput. Graph. Image Process..

[85]  James S. Duncan,et al.  A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint , 2010, Medical Image Anal..

[86]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[87]  Mohamed-Jalal Fadili,et al.  Region-Based Active Contours with Exponential Family Observations , 2009, Journal of Mathematical Imaging and Vision.

[88]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[89]  Paul F. Whelan,et al.  Segmentation of the Left Ventricle of the Heart in 3-D+t MRI Data Using an Optimized Nonrigid Temporal Model , 2008, IEEE Transactions on Medical Imaging.

[90]  Julien Mille,et al.  Narrow band region-based active contours and surfaces for 2D and 3D segmentation , 2009, Comput. Vis. Image Underst..

[91]  Fabrice Heitz,et al.  Affine-invariant geometric shape priors for region-based active contours , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  J. Bosch,et al.  Automated border detection in three-dimensional echocardiography: principles and promises. , 2010, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[93]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[94]  Denis Friboulet,et al.  B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation , 2012, IEEE Transactions on Image Processing.

[95]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[96]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[97]  Michel Barlaud,et al.  Segmentation of Vectorial Image Features Using Shape Gradients and Information Measures , 2006, Journal of Mathematical Imaging and Vision.

[98]  Daniel Cremers,et al.  A Multiphase Dynamic Labeling Model for Variational Recognition-driven Image Segmentation , 2005, International Journal of Computer Vision.

[99]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..