Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted $\ell_p$-spaces for $0<p\leq 1$. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the $L_2$, resp. $L_\infty$ convergence rates afforded by best $s$-term approximations of the parametric solution up to logarithmic factors.

[1]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[2]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[3]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[4]  Frances Y. Kuo,et al.  Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations with Random Field Inputs , 2014, SIAM J. Numer. Anal..

[5]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[6]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[7]  Gary Tang,et al.  Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.

[8]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[9]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[10]  Guannan Zhang,et al.  Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients , 2015, Numerische Mathematik.

[11]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[12]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[13]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[14]  Jonas Sukys,et al.  Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[15]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[16]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[17]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[18]  Christoph Schwab,et al.  Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs , 2013 .

[19]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[20]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[21]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2014 .

[22]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  T. J. Rivlin Chebyshev polynomials : from approximation theory to algebra and number theory , 1990 .

[25]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[26]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[27]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[28]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[29]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[30]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[31]  Christoph Schwab,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .

[32]  Josef Dick,et al.  Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.

[33]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[34]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2014 .

[35]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[36]  Jason Jo,et al.  Iterative Hard Thresholding for Weighted Sparse Approximation , 2013, ArXiv.

[37]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[38]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.

[39]  Daniel Potts,et al.  Fast algorithms for discrete polynomial transforms on arbitrary grids , 2003 .

[40]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[41]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[42]  P. Wojtaszczyk,et al.  Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing , 2010, Found. Comput. Math..

[43]  Christoph Schwab,et al.  QMC Galerkin Discretization of Parametric Operator Equations , 2013 .

[44]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[45]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[46]  H. Rauhut,et al.  Interpolation via weighted $l_1$ minimization , 2013, 1308.0759.

[47]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[48]  Michael Döhler,et al.  Nonequispaced Hyperbolic Cross Fast Fourier Transform , 2010, SIAM J. Numer. Anal..

[49]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[50]  Claude Jeffrey Gittelson,et al.  Adaptive wavelet methods for elliptic partial differential equations with random operators , 2014, Numerische Mathematik.

[51]  Holger Rauhut,et al.  Compressed sensing Petrov-Galerkin approximations for parametric PDEs , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[52]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[53]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[54]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[55]  Victor Nistor,et al.  HIGH-ORDER GALERKIN APPROXIMATIONS FOR PARAMETRIC SECOND-ORDER ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .

[56]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[57]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[58]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[59]  Frances Y. Kuo,et al.  Higher order QMC Galerkin discretization for parametric operator equations , 2013, 1309.4624.

[60]  Christoph Schwab,et al.  Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .

[61]  Claudia Schillings,et al.  Sparse Quadrature Approach to Bayesian Inverse Problems , 2013 .

[62]  C. Schwab,et al.  Sparse Adaptive Approximation of High Dimensional Parametric Initial Value Problems , 2013 .

[63]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[64]  Albert Cohen,et al.  On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.

[65]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[66]  Claude Jeffrey Gittelson,et al.  A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes , 2013 .