Discretization of polynomial vector fields by polarization
暂无分享,去创建一个
Elena Celledoni | Brynjulf Owren | David I. McLaren | G. R. W. Quispel | Robert I. McLachlan | G. Quispel | R. McLachlan | E. Celledoni | B. Owren | D. McLaren
[2] Matteo Petrera,et al. On integrability of Hirota-Kimura type discretizations , 2010, 1008.1040.
[3] A. Pfadler. Bilinear Discretization of Integrable Quadratic Vector Fields: Algebraic Structure and Algebro-Geometric Solutions , 2011 .
[4] Y. Suris,et al. S. V. Kovalevskaya system, its generalization and discretization , 2012, 1208.3726.
[5] Kinji Kimura,et al. Discretization of the Lagrange Top , 2000 .
[6] Abraham OCHOCHE,et al. General Linear Methods , 2006 .
[7] V.E.Kravtsov,et al. Statistics of anomalously localized states at the center of band E=0 in the one-dimensional Anderson localization model , 2012, 1208.4789.
[8] Jesús María Sanz-Serna,et al. An unconventional symplectic integrator of W. Kahan , 1994 .
[9] Y. Suris,et al. On the Hamiltonian structure of Hirota‐Kimura discretization of the Euler top , 2007, 0707.4382.
[10] A. Veselov. Growth and integrability in the dynamics of mappings , 1992 .
[11] Elena Celledoni,et al. Geometric properties of Kahan's method , 2012, 1209.1164.
[12] Andrew Hone,et al. Non-standard discretization of biological models , 2014, Natural Computing.
[13] A. Hone,et al. THREE-DIMENSIONAL DISCRETE SYSTEMS OF HIROTA-KIMURA TYPE AND DEFORMED LIE-POISSON ALGEBRAS , 2008, 0810.5490.
[14] William Kahan,et al. Unconventional Schemes for a Class of Ordinary Differential Equations-With Applications to the Korteweg-de Vries Equation , 1997 .
[15] G. R. W. Quispel,et al. k-integrals and k-Lie symmetries in discrete dynamical systems , 1996 .
[16] J. C. Diller,et al. Dynamics of bimeromorphic maps of surfaces , 2001 .
[17] P. Santini,et al. Integrable symplectic maps , 1991 .
[18] M. P. Bellon,et al. Algebraic Entropy , 1999 .
[19] Y. Suris,et al. Spherical geometry and integrable systems , 2012, 1208.3625.
[20] Debin Huang. A coordinate-free reduction for flows on the volume manifold , 2004, Appl. Math. Lett..
[21] Brynjulf Owren,et al. A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..
[22] Elena Celledoni,et al. Integrability properties of Kahanʼs method , 2014, 1405.3740.
[23] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[24] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .