A data-driven framework for neural field modeling

This paper presents a framework for creating neural field models from electrophysiological data. The Wilson and Cowan or Amari style neural field equations are used to form a parametric model, where the parameters are estimated from data. To illustrate the estimation framework, data is generated using the neural field equations incorporating modeled sensors enabling a comparison between the estimated and true parameters. To facilitate state and parameter estimation, we introduce a method to reduce the continuum neural field model using a basis function decomposition to form a finite-dimensional state-space model. Spatial frequency analysis methods are introduced that systematically specify the basis function configuration required to capture the dominant characteristics of the neural field. The estimation procedure consists of a two-stage iterative algorithm incorporating the unscented Rauch-Tung-Striebel smoother for state estimation and a least squares algorithm for parameter estimation. The results show that it is theoretically possible to reconstruct the neural field and estimate intracortical connectivity structure and synaptic dynamics with the proposed framework.

[1]  Viktor K. Jirsa,et al.  Spatiotemporal forward solution of the EEG and MEG using network modeling , 2002, IEEE Transactions on Medical Imaging.

[2]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[3]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[4]  Simo Särkkä,et al.  Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers , 2010, Signal Process..

[5]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[6]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[7]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[8]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[9]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[10]  Tohru Ozaki The Local Linearization Filter with Application to Nonlinear System Identifications , 1994 .

[11]  K. Cheung Implantable microscale neural interfaces , 2007, Biomedical microdevices.

[12]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[13]  W. Hesse,et al.  The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies , 2003, Journal of Neuroscience Methods.

[14]  Steven J. Schiff,et al.  Assimilating Seizure Dynamics , 2010, PLoS Comput. Biol..

[15]  Koichi Sameshima,et al.  Using partial directed coherence to describe neuronal ensemble interactions , 1999, Journal of Neuroscience Methods.

[16]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[17]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[18]  P. Robinson,et al.  Mechanisms of cortical electrical activity and emergence of gamma rhythm. , 2000, Journal of theoretical biology.

[19]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[20]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Tohru Ozaki,et al.  A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation , 2008, Cognitive Neurodynamics.

[22]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[23]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[24]  Tohru Ozaki,et al.  The Role of the Likelihood Function in the Estimation of Chaos Models , 2000 .

[25]  B. Baird,et al.  Relation of olfactory EEG to behavior: spatial analysis. , 1987, Behavioral neuroscience.

[26]  D. Liley,et al.  Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. , 1999, Network.

[27]  T. J. Sullivan,et al.  A model of surround suppression through cortical feedback , 2006, Neural Networks.

[28]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[29]  Viktor K Jirsa,et al.  Neural field dynamics with heterogeneous connection topology. , 2007, Physical review letters.

[30]  Steven J Schiff,et al.  Kalman filter control of a model of spatiotemporal cortical dynamics , 2008, BMC Neuroscience.

[31]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[32]  P. Nunez Toward a quantitative description of large-scale neocortical dynamic function and EEG , 2000, Behavioral and Brain Sciences.

[33]  Benjamin H. Brinkmann,et al.  Large-scale electrophysiology: Acquisition, compression, encryption, and storage of big data , 2009, Journal of Neuroscience Methods.

[34]  P A Robinson,et al.  Estimation of multiscale neurophysiologic parameters by electroencephalographic means , 2004, Human brain mapping.

[35]  Steven J. Schiff,et al.  Kalman meets neuron: The emerging intersection of control theory with neuroscience , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[37]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[38]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[39]  David T. J. Liley,et al.  Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons , 1999 .

[40]  John R. Terry,et al.  Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Katarzyna J. Blinowska,et al.  A new method of the description of the information flow in the brain structures , 1991, Biological Cybernetics.

[42]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[43]  T. Ozaki A local linearization approach to nonlinear filtering , 1993 .

[44]  Karl J. Friston,et al.  Dynamic causal modelling of distributed electromagnetic responses , 2009, NeuroImage.

[45]  W. Freeman,et al.  Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands , 2000, Journal of Neuroscience Methods.

[46]  Visakan Kadirkamanathan,et al.  Estimation and Model Selection for an IDE-Based Spatio-Temporal Model , 2009, IEEE Transactions on Signal Processing.

[47]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[48]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[49]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[50]  Karl J. Friston,et al.  Population dynamics: Variance and the sigmoid activation function , 2008, NeuroImage.

[51]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[52]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[53]  Viktor Jirsa Neural field dynamics with local and global connectivity and time delay , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[55]  Visakan Kadirkamanathan,et al.  Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation , 2009, IEEE Transactions on Signal Processing.

[56]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[57]  Oliver Lundqvist,et al.  Numerical Methods for Ordinary Differential Equations , 2013, An Introduction to Numerical Methods and Analysis 3e.

[58]  D. Liley,et al.  Modeling electrocortical activity through improved local approximations of integral neural field equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[60]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[61]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.