Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.

Applications of porous metal-organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used to construct a cross-reactive sensor array that allows for clear discrimination between different categories of VOCs. Experimental data show that multiple sensing mechanisms are operative with high degrees of orthogonality, establishing that the 2D MOFs used here are mechanistically unique and offer advantages relative to other known chemiresistor materials.

[1]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[2]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[3]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[4]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[5]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[6]  Shu Seki,et al.  Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. , 2013, Journal of the American Chemical Society.

[7]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[8]  Fei Wang,et al.  Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. , 2011, Journal of the American Chemical Society.

[9]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[10]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[11]  Y. Choa,et al.  Hybridized conducting polymer chemiresistive nano-sensors , 2013 .

[12]  N. Brandon,et al.  Engineering porous materials for fuel cell applications , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[14]  K. Mirica,et al.  Mechanical drawing of gas sensors on paper. , 2012, Angewandte Chemie.

[15]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[16]  X. Crispin,et al.  Towards polymer-based organic thermoelectric generators , 2012 .

[17]  M. Oschatz,et al.  Tailoring porosity in carbon materials for supercapacitor applications , 2014 .

[18]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[19]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[20]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[21]  D. D’Alessandro,et al.  Towards Conducting Metal-Organic Frameworks , 2011 .

[22]  T. Swager,et al.  Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds , 2015 .

[23]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[24]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[25]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[26]  Joseph M. Azzarelli,et al.  Rapid prototyping of carbon-based chemiresistive gas sensors on paper , 2013, Proceedings of the National Academy of Sciences.

[27]  N. Myung,et al.  Recent progress in carbon nanotube-based gas sensors , 2008, Nanotechnology.

[28]  X. Duan,et al.  Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. , 2012, Chemistry.