Computing Replenishment Cycle Policy under Non-stationary Stochastic Lead Time

In this paper we address the general multi-period production/inventory problem with non-stationary stochastic demand and supplier lead time under service-level constraints. A replenishment cycle policy (R n ,S n ) is modeled, where R n is the n-th replenishment cycle length and S n is the respective order-up-to-level. Initially we extend an existing formulation for this policy in a way to incorporate a dynamic deterministic lead time with the assumption of order cross-over. Following this, we extend the model to incorporate a non-stationary stochastic lead time. Within a constraint programming framework, a dedicated constraint implementing a hybrid approach is proposed to compute replenishment cycle policy parameters.

[1]  James H. Bookbinder,et al.  Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints , 1988 .

[2]  Joseph A. Hunt Balancing Accuracy and Simplicity in Determining Reorder Points , 1965 .

[3]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[4]  Toby Walsh,et al.  Stochastic Constraint Programming: A Scenario-Based Approach , 2009, Constraints.

[5]  Chris N. Potts,et al.  Constraint satisfaction problems: Algorithms and applications , 1999, Eur. J. Oper. Res..

[6]  Ronald G. Askin A Procedure for Production Lot Sizing with Probabilistic Dynamic Demand , 1981 .

[7]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[8]  Toby Walsh,et al.  Stochastic Constraint Programming , 2002, ECAI.

[9]  Pascal Van Hentenryck,et al.  versus Specificity: an Experience with AI and , 1988 .

[10]  Ş. Tarim,et al.  The stochastic dynamic production/inventory lot-sizing problem with service-level constraints , 2004 .

[11]  Paul H. Zipkin,et al.  Stochastic leadtimes in continuous‐time inventory models , 1986 .

[12]  Jean-François Puget,et al.  Program Does Not Equal Program: Constraint Programming and Its Relationship to Mathematical Programming , 2001, Interfaces.

[13]  M. D. Wilkinson,et al.  Management science , 1989, British Dental Journal.

[14]  Kostas Stergiou,et al.  Algorithms for Stochastic CSPs , 2006, CP.

[15]  Susan H. Xu,et al.  Order crossover in inventory systems , 1995 .

[16]  Gerard Gaalman,et al.  Modeling expected inventory order crossovers , 2006 .

[17]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[18]  Jean-Charles Régin,et al.  Global Constraints and Filtering Algorithms , 2004 .

[19]  M. Fu,et al.  Optimization of( s, S ) inventory systems with random lead times and a service level constraint , 1998 .

[20]  Andrea Lodi,et al.  Cost-Based Domain Filtering , 1999, CP.

[21]  R. Kaplan A Dynamic Inventory Model with Stochastic Lead Times , 1970 .

[22]  J. Riezebos Inventory order crossovers , 2006 .

[23]  Armagan Tarim,et al.  Constraint programming for computing non-stationary (R, S) inventory policies , 2008, Eur. J. Oper. Res..

[24]  Roberto Rossi,et al.  Cost-Based Filtering for Stochastic Inventory Control , 2006, CSCLP.

[25]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[26]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[27]  E. Silver Inventory control under a probabilistic time-varying, demand pattern , 1978 .

[28]  Mohamed Ben-Daya,et al.  Some stochastic inventory models with deterministic variable lead time , 1999, Eur. J. Oper. Res..

[29]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[30]  G. D. Eppen,et al.  Determining Safety Stock in the Presence of Stochastic Lead Time and Demand , 1988 .