Topological data assimilation using Wasserstein distance

This work combines a level-set approach and the optimal transport-based Wasserstein distance in a data assimilation framework. The primary motivation of this work is to reduce assimilation artifacts resulting from the position and observation error in the tracking and forecast of pollutants present on the surface of oceans or lakes. Both errors lead to spurious effect on the forecast that need to be corrected. In general, the geometric contour of such pollution can be retrieved from observation while more detailed characteristics such as concentration remain unknown. Herein, level sets are tools of choice to model such contours and the dynamical evolution of their topology structures. They are compared with contours extracted from observation using the Wasserstein distance. This allows to better capture position mismatches between both sources compared with the more classical Euclidean distance. Finally, the viability of this approach is demonstrated through academic test cases and its numerical performance is discussed.

[1]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[2]  S. Cohn,et al.  Applications of Estimation Theory to Numerical Weather Prediction , 1981 .

[3]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[4]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[5]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[6]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[7]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[8]  R. Hoffman,et al.  A Technique for Assimilating SSM/I Observations of Marine Atmospheric Storms: Tests with ECMWF Analyses , 1996 .

[9]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[10]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[11]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[12]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[13]  C. Villani Topics in Optimal Transportation , 2003 .

[14]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[15]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[16]  John S. Lowengrub,et al.  An improved geometry-aware curvature discretization for level set methods: Application to tumor growth , 2006, J. Comput. Phys..

[17]  Julie Delon,et al.  Movie and video scale-time equalization application to flicker reduction , 2006, IEEE Transactions on Image Processing.

[18]  M. L. Martins,et al.  Multiscale models for the growth of avascular tumors , 2007 .

[19]  Dennis McLaughlin,et al.  Data assimilation by field alignment , 2007 .

[20]  M. Nodet Variational assimilation of Lagrangian data in oceanography , 2007, 0804.1137.

[21]  Nicolas Papadakis,et al.  A Variational Technique for Time Consistent Tracking of Curves and Motion , 2008, Journal of Mathematical Imaging and Vision.

[22]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[23]  David E. Keyes,et al.  Modeling wildland fire propagation with level set methods , 2007, Comput. Math. Appl..

[24]  Xavier Bresson,et al.  Local Histogram Based Segmentation Using the Wasserstein Distance , 2009, International Journal of Computer Vision.

[25]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[26]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[27]  Variational data assimilation to estimate the velocity in the wave equation , 2010 .

[28]  Nicolas Papadakis,et al.  A Variational Model for Histogram Transfer of Color Images , 2011, IEEE Transactions on Image Processing.

[29]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[30]  Isabelle Herlin,et al.  Object's tracking by advection of a distance map , 2013, 2013 IEEE International Conference on Image Processing.

[31]  Isabelle Herlin,et al.  Continuous Tracking of Structures from an Image Sequence , 2013, VISAPP.

[32]  Arnaud Trouvé,et al.  Towards predictive data-driven simulations of wildfire spread - Part II: Ensemble Kalman Filter for the state estimation of a front-tracking simulator of wildfire spread , 2014 .

[33]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[34]  Didier Lucor,et al.  Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .

[35]  Francesca P. Carli,et al.  Coping with model error in variational data assimilation using optimal mass transport , 2014 .

[36]  Ross N. Hoffman,et al.  Correcting for position errors in variational data assimilation , 2015 .

[37]  N. Papadakis,et al.  Multi-physics optimal transportation and image interpolation , 2015 .

[38]  J. Virieux,et al.  An optimal transport approach for seismic tomography: application to 3D full waveform inversion , 2016 .

[39]  A. Mathieu,et al.  Using the Wasserstein distance to compare fields of pollutants: application to the radionuclide atmospheric dispersion of the Fukushima-Daiichi accident , 2016 .

[40]  Long Li,et al.  A Level-Set-Based Image Assimilation Method: Potential Applications for Predicting the Movement of Oil Spills , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[41]  A. Vidard,et al.  Optimal transport for variational data assimilation , 2017 .

[42]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[43]  Xuanqin Mou,et al.  Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss , 2017, IEEE Transactions on Medical Imaging.

[44]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[45]  Wotao Yin,et al.  A Parallel Method for Earth Mover’s Distance , 2018, J. Sci. Comput..

[46]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[47]  Philippe Moireau,et al.  Front shape similarity measure for shape-oriented sensitivity analysis and data assimilation for Eikonal equation , 2018 .

[48]  Stanley Osher,et al.  Computations of Optimal Transport Distance with Fisher Information Regularization , 2017, J. Sci. Comput..